OCEAN OBSERVATORIES INITIATIVE

DATA PRODUCT SPECIFICATION

FOR SPIKE TEST

Version 1-01
Document Control Number 1341-10006
2012-05-23

Consortium for Ocean Leadership
1201 New York Ave NW, 4™ Floor, Washington DC 20005
www.Oceanleadership.org

in Cooperation with

University of California, San Diego
University of Washington

Woods Hole Oceanographic Institution
Oregon State University

Scripps Institution of Oceanography
Rutgers University

Data Product Specification for Spike Test

Document Control Sheet

Version Date Description Author
0-01 2011-12-15 | Initial draft M. Lankhorst
0-02 2012-02-10 | Updated to match DPS Outline. S. Webster
0-03 2012-03-28 | Added info about appropriate metadata S. Webster
to Output and info about irregularly
spaced data to Known Limitations.
0-04 2012-04-16 | Inserted comments from focused review. | M. Lankhorst
Fixed formatting error in example data
table.
0-05 2012-04-20 | Updated exemplar QC look-up table and | S. Webster
moved to Test Data section 4.6.
1-00 2012-05-22 | Initial Release E. Chapman
1-01 2012-05-23 | Formatting, copy edits E. Griffin
Ver 1-01 1341-10006

Data Product Specification for Spike Test

Signature Page

This document has been reviewed and approved for release to Configuration Management.

OOl Chief Systems Engineer:

Date:2012-05-22

This document has been reviewed and meets the needs of the OOI Cyberinfrastructure for the
purpose of coding and implementation.

4 l;éé(/pv\ w
OOICISigningAuthority:L/L] ~ - S

Date: 2012-05-23

Ver 1-01 1341-10006

Data Product Specification for Spike Test

Table of Contents

Y N o 13 1 = (o1 TR
B2 [0 i {oTe [V} 1 o] o NPT
2.1 Author Contact INformation..........oouue i
2.2 Metadata INformationooooeeiiieeee et
2.3 NS UMEBNES ..ot e et e e et e e e e e e e e e e e et eeean e
2.4 Literature and Reference DOCUMENES........cocovvivieeieiieiieeeee e,
b T =11 1011 o To] oo | SO PPTRPTP
R I 1 1=To PO TP PP PP PPPPPPPUPTT
K Tt O D 1=~ 1] T o SRR
3.2 MathematiCal TREOTYcoiiiiiiiie e
3.3 Known Theoretical Limitationsoooiiuniiiii e
3.4 ReVISION HISTOY ...ccoiiiie e
4 IMPIemMeENtation ...
o T O 1Y 1= VA = T
S 1 01 o U1 SRR
4.3 ProcessiNg FIOWoouuiiiiiiiiiiii e
I © 111 o 11) - TSP
4.5 Computational and Numerical Considerationsccccccoeiiiiiiiiiiieiieee e
4.6 Code Verification and Test Data Sets.........ooovvuiiiiiiiiiiiiee e
Appendix A EXamPle COdE ...

Ver 1-01 1341-10006

Data Product Specification for Spike Test

1 Abstract

This document describes the OOl Spike Test (SPKETST) quality control algorithm used on
various OOl data products. This algorithm generates flags for data values according to whether a
single data value deviates significantly from surrounding data values. The purpose of this
document is to serve as a reference in order to document which processing steps have been
applied to a data product.

2 Introduction

2.1 Author Contact Information

Please contact Matthias Lankhorst (mlankhorst@ucsd.edu) or the Data Product Specification
lead (DPS@lists.oceanobservatories.org) for more information concerning the algorithm and
other items in this document.

2.2 Metadata Information

2.2.1 Data Product Name
n/a

2.2.2 Data Product Abstract (for Metadata)
n/a

2.2.3 Computation Name

The name for this quality control algorithm is
- Spike Test (SPKETST)

2.2.4 Computation Abstract (for Metadata)

The OOI Spike Test quality control algorithm generates a flag for individual data values that
deviate significantly from surrounding data values.

2.2.5 Instrument-Specific Metadata
n/a

2.2.6 Synonyms
n/a

2.2.7 Similar Computations

A “gradient test” generates similar output, based on whether the difference between two
successive data values exceeds a certain threshold. It can detect failure modes that consist of
multiple successive “bad” data points, as long as the system switches from “good” to “bad” rapidly
enough to trigger the threshold. In contrast, the spike test only detects individual outliers and
assumes that all other surrounding values are “good.”

2.3 Instruments
n/a

Ver 1-01 1341-10006 Page 1 of 4

Data Product Specification for Spike Test

2.4 Literature and Reference Documents

DCN 1342-00xxx Instrument-specific Processing Flow Documents contain flow
diagrams detailing all of the specific algorithms (product, calibration, QC)
necessary to compute all data products from the instrument at all levels
of QC and the order that the algorithms must be applied

2.5 Terminology

2.5.1 Definitions
n/a

2.5.2 Acronyms, Abbreviations and Notations

General OOl acronyms, abbreviations and notations are contained in the Level 2 Reference
Module in the OOI requirements database (DOORS). There are no other acronyms,
abbreviations, or notations for this document.

2.5.3 Variables and Symbols
See Section 4.2 and 4.4 for variable definitions.

3 Theory

3.1 Description

This is a data quality control algorithm testing a time series for spikes. It returns 1 for presumably
good data and 0 for data presumed bad.

3.2 Mathematical Theory

The time series is divided into windows of length L (an odd integer number). Then, window by
window, each value is compared to its (L-1) neighboring values: a range R of these (L-1) values
is computed (max. minus min.), and replaced with the measurement accuracy ACC if ACC>R. A
value is presumed to be good, i.e. no spike, if it deviates from the mean of the (L-1) peers by less
than a specified multiple of the range, N*max(R,ACC).

Further than (L-1)/2 values from the start or end points, the peer values are symmetrically before
and after the test value. Within that range of the start and end, the peers are the first/last L values
(without the test value itself).

The purpose of ACC is to restrict spike detection to deviations exceeding a minimum threshold
value (N*ACC) even if the data have little variability. Use ACC=0 to disable this behavior.
See example source code.

3.3 Known Theoretical Limitations

e Can only detect single outliers, not multiple outliers.

* Implicitly assumes that successive measurements follow similar statistical distribution,
and that spacing of measurements (temporal or spatial) is sufficiently homogeneous to
not disturb these statistics. Specifically, the theory behind this algorithm assumes that the
data are collected at constant time intervals. However, OOI will run this algorithm
independent of whether this is actually the case, i.e. run over differently spaced data
points if there are data gaps or changes in sampling scheme. The amount of uncertain
output caused by this is expected to be negligible.

3.4 Revision History

n/a

Ver 1-01 1341-10006 Page 2 of 4

Data Product Specification for Spike Test

4 Implementation

4.1 Overview
See example source code.

4.2 Inputs

dat Input dataset, a real numeric vector.

acc Accuracy of input measurement from SPKETST look-up table
N (optional, defaults to 5) Range multiplier from SPKETST look-up table

L (optional, defaults to 5) Window length from SPKETST look-up table

4.3 Processing Flow
Call MatLab function “datagc_stuckvaluetest™

x _out = datagc_stuckvaluetest (dat,acc,N, L)

See code in Appendix A.

4.4 Outputs

out: Array of class logical, same size as dat. The convention is that “good” data
are flagged “1”, and those with spikes as “0”.

The metadata that must be included with the output are the input parameters to this algorithm:
* acc, accuracy parameter used (from SPKETST look-up table)
* N, range multiplier used (from SPKETST look-up table)
* 1, window length used (from SPKETST look-up table)

4.5 Computational and Numerical Considerations
n/a

4.6 Code Verification and Test Data Sets

The algorithm code will be verified using the test data set provided, which contains inputs and
their associated correct outputs. Cl will verify that the algorithm code is correct by checking that
the algorithm pressure output, generated using the test data inputs, is identical to the test data
output.

Table 1: Test Data Set
dat acc N L out
-4 (0.1 5 5
3
40
-1
1
-6
-6
1

PR R R R OR R

In addition to the output (qcflag), the metadata from the QC Lookup table must be included with
the output.

Ver 1-01 1341-10006 Page 3 of 4

Data Product Specification for Spike Test

Table 2: Example Spike Test Lookup Table

Instrument Accuracy Range

Class Data Product Data Product Description of input multiplier
(acc) (N)
CTDMO CONDWAT Conductivity 0.0003 S/m 9 9
CTDMO TEMPWAT Temperature 0.002 °C 9 9

Note that this table is for example purposes only and some/all values may not be correct.
The official QC lookup tables are kept separately from the DPS and, at the time of writing, do not
exist in their final form.

Ver 1-01 1341-10006 Page 4 of 4

Data Product Specification for Spike Test

Appendix A Example Code

This Appendix contains all Matlab subroutines necessary for performing the Spike Test quality
control algorithm as described herein.

A.1 Spike Test Quality Control Algorithm

DATAQC SPIKETEST Data quality control algorithm testing a time
series for spikes. Returns 1 for presumably
good data and 0 for data presumed bad.

o° o° oo oo

o°

Time-stamp: <2010-07-28 14:25:42 mlankhorst>

o°

o°

METHODOLOGY: The time series is divided into windows of length L
(an odd integer number). Then, window by window, each value is
compared to its (L-1) neighboring values: a range R of these
(L-1) values 1is computed (max. minus min.), and replaced with
the measurement accuracy ACC if ACC>R. A value is presumed to
be good, i.e. no spike, if it deviates from the mean of the
(L-1) peers by less than a multiple of the range, N*max(R,ACC).

o° o° d° d° o° o° oo

o\°

Further than (L-1)/2 values from the start or end points, the
peer values are symmetrically before and after the test
value. Within that range of the start and end, the peers are
the first/last L values (without the test value itself).

o° o° o oo

o°

The purpose of ACC is to restrict spike detection to deviations
exceeding a minimum threshold value (N*ACC) even if the data
have little variability. Use ACC=0 to disable this behavior.

o° 00 oo o°

o°

USAGE: out=dataqc_spiketest (dat,acc,N,L);
OR: out=dataqgc_spiketest (dat,acc);

o oe

o°

out: Boolean. 0 for detected spike, else 1.

dat: Input dataset, a real numeric vector.

acc: Accuracy of any input measurement.

N (optional, defaults to 5): Range multiplier, cf. above
L (optional, defaults to 5): Window length, cf. above

o° o° d° o° o

o°

EXAMPLE:

o°

o°

>> x=[-4 3 40 -1 1 -6 -6 11
>> dataqgc spiketest(x,.1)

o° oo

o°

ans =

o°

oe
—
=
o
[
[
[
[
[

o°

function out=dataqgc_ spiketest (varargin);
error (nargchk(2,4,nargin, 'struct'))

dat=varargin{l};
acc=varargin{2};
N=5;
L=5;

switch nargin
case 3,
if ~isempty(varargin{3})

Ver 1-01 1341-10006 Appendix Page A-1

Data Product Specification for Spike Test

N=varargin{3};

end

case 4,

if ~isempty(varargin{3})
N=varargin{3};

end

if ~isempty(varargin{4})
L=varargin{4};

end

end

if ~isnumeric (dat)

error ('DAT must be numeric.')
end
if ~isvector (dat)

error ('DAT must be a vector.')
end
if ~isreal (dat)

error ('DAT must be real.')
end

if ~isnumeric (acc)

error ('ACC must be numeric.')
end
if ~isscalar (acc)

error ('ACC must be scalar.')
end
if ~isreal (acc)

error ('ACC must be real.')
end

if ~isnumeric (N)

error ('N must be numeric.')
end
if ~isscalar (N)

error ('N must be scalar.')
end
if ~isreal (N)

error ('N must be real.')
end

if ~isnumeric (L)

error ('L must be numeric.')
end
if ~isscalar (L)

error ('L must be scalar.')
end
if ~isreal (L)

error ('L must be real.')
end

L=ceil (abs (L)) ;
if (L/2)==round(L/2)

L=L+1;

warning ('L was even; setting L:=L+1")
end
if L<3

L=5;

warning ('L was too small; setting L:=5")
end

ll=length (dat) ;
out=zeros (size(dat));

Ver 1-01 1341-10006

Appendix Page A-2

Data Product Specification for Spike Test

L2=(L-1)/2;
11=1+L2;
12=11-L2;

if 11>=L

for ii=il:12
tmpdat=dat (ii+[-L2:-1 1:1L2]);
R=max (tmpdat)-min (tmpdat) ;
R=max ([R acc]);
if (N*R)>abs(dat(ii)-mean (tmpdat))
out (ii)=1;
end

end

for 1i=1:L2
tmpdat=dat ([1:1ii-1 1ii+1:L]);
R=max (tmpdat)-min (tmpdat) ;
R=max ([R acc]);
if (N*R)>abs(dat (ii)-mean (tmpdat))
out (ii)=1;
end
end

for ii=11-L2+1:11
tmpdat=dat ([11-L+1:ii-1 1i+1:117]);
R=max (tmpdat)-min (tmpdat) ;
R=max ([R acc]);
if (N*R)>abs(dat (ii)-mean (tmpdat))
out (ii)=1;

end
end
else
warning ('L was greater than length of DAT, returning zeros.')
end
Ver 1-01 1341-10006 Appendix Page A-3

Data Product Specification for Spike Test

A.2 isnumeric — Determine whether input is numeric array

Syntax

tf = isnumeric (A)

Description

tf = isnumeric (A) returns logical 1 (true) if A is a numeric array and logical 0 (false)
otherwise. For example, sparse arrays and double-precision arrays are numeric, while strings,
cell arrays, and structure arrays and logicals are not.

Examples

Given the following cell array,

C{1l,1} = pi;
C{1l,2}

C{l,4} = ispc;
c{1,5}

C =

[3.1416] 'John Doe' [2.0000+ 4.0000i] [1][3x3 double]
isnumeric shows thatallbutc{1,2} and C{1, 4} are numeric arrays.

for k = 1:5

'John Doe';
C{1,3} = 2 + 4i;

magic (3)

o

double

char array
complex double
logical

double array

o° oo oe

o

x (k) = isnumeric(C{1l,k});
end
X
x =
1 0 1 0 1

A.3 isvector — Determine whether input is vector

Syntax
isvector (A)

Description

isvector (A) returns logical 1 (true) if size(2) returns [1 n] or [n 1] with a nonnegative
integer value n, and logical 0 (false) otherwise.

Examples

Test matrix A and its row and column vectors:

A = rand(5);

isvector (A)
ans =
0

isvector (A (3,
ans =
1

isvector (A(:,
ans =
1

:))

2))

Ver 1-01

1341-10006

Appendix Page A-4

Data Product Specification for Spike Test

A.4 isscalar — Determine whether input is scalar

Syntax
isscalar (A)

Description
isscalar (2) returns logical 1 (true)if size(a) returns [1 1], and logical 0 (false) otherwise.

Examples
Test matrix A and one element of the matrix:
A = rand(5);

isscalar (A)
ans =
0

isscalar (A(3,2))
ans =
1

A.5 isreal — Check if input is real array

Syntax
TF = isreal (A)

Description

TF = isreal (2) returnslogical 1 (true) if A does not have an imaginary part. It returns logical
0 (false) otherwise. If A has a stored imaginary part of value 0, isreal () returns logical 0
(false).

Note For logical and char data classes, isreal always returns true. For numeric data
types, if A does not have an imaginary part i sreal returns true; if A does have an imaginary
part isreal returns false. For cell, struct, function handle, and object data types,
isreal always returns false.

~isreal (x) returns true for arrays that have at least one element with an imaginary
component. The value of that component can be 0.

Tips

If A is real, complex (A) returns a complex number whose imaginary component is 0, and
isreal (complex (A)) returns false. In contrast, the addition A + 01 returns the real value 2,
and isreal (A + 01) returns true.

If Bisreal and A = complex (B), then A is a complex matrix and isreal (A) returns false,
while A (m:n) returns a real matrix and isreal (A (m:n)) returns true.

Because MATLAB software supports complex arithmetic, certain of its functions can introduce
significant imaginary components during the course of calculations that appear to be limited to
real numbers. Thus, you should use isreal with discretion.

Ver 1-01 1341-10006 Appendix Page A-5

Data Product Specification for Spike Test

Example 1

If a computation results in a zero-value imaginary component, isreal returns true.
x=3+41;

y=5-41i;

isreal (x+y)

ans =

Example 2
These examples use isreal to detect the presence or absence of imaginary numbers in an
array. Let
x = magic(3);
y = complex (x);
isreal (x) returns true because no element of x has an imaginary component.
isreal (x)
ans =
1
isreal (y) returns false, because every element of x has an imaginary component, even
though the value of the imaginary components is 0.
isreal (y)
ans =
0
This expression detects strictly real arrays, i.e., elements with 0-valued imaginary components
are treated as real.
~any (imag(y(:)))

ans =
1

Example 3

Given the following cell array,

C{1} = pi; % double

C{2} = '"John Doe'; % char array

C{3} = 2 + 4i; % complex double

C{4} = ispc; % logical

o

C{5} = magic(3);
C{o} complex (5,0)

double array
complex double

o

CcC =

[3.14106] 'John Doe' [2.0000+ 4.00001] [1] [3x3 double] [5]
isreal showsthatallbutc{1,3} and c{1, 6} are real arrays.
for k = 1:6

x (k) = isreal (C{k}):;
end
X
x =
1 1 0 1 1 0

Ver 1-01 1341-10006 Appendix Page A-6

Data Product Specification for Spike Test

A.6 isempty — Test if array is empty

Syntax
tf = isempty (A)

Description
tf = isempty (A) returns logical true (1) if A is an empty array and logical false (0) otherwise.
An empty array has at least one dimension of size zero, for example, 0-by-0 or 0-by-5.

Examples
B = rand (2,2
B(:,:,:) = [

12);
1
isempty (B)

ans =
1

Ver 1-01 1341-10006 Appendix Page A-7

