OCEAN OBSERVATORIES INITIATIVE

DATA PRODUCT SPECIFICATION

FOR TREND TEST

Version 1-01
Document Control Number 1341-10007
2012-05-23

Consortium for Ocean Leadership
1201 New York Ave NW, 4™ Floor, Washington DC 20005
www.Oceanleadership.org

in Cooperation with

University of California, San Diego
University of Washington

Woods Hole Oceanographic Institution
Oregon State University

Scripps Institution of Oceanography
Rutgers University

Data Product Specification for Trend Test

Document Control Sheet

Version Date Description Author

0-01 2011-12-21 Initial draft M. Lankhorst, S.H. Nam

0-02 2012-03-02 | Modified to match DPS Outline. S. Webster

0-03 2012-03-28 | Added info about appropriate S. Webster
metadata to Output.

0-04 2012-04-16 | Incorporated comments from M. Lankhorst
focused review

0-05 2012-05-16 Updated exemplar QC lookup table S. Webster
and moved to Test Data section 4.6.

1-00 2012-05-22 | Initial Release E. Chapman

1-01 2012-05-23 | Formatting, copy edits E. Griffin

Ver 1-01 1341-10007

Data Product Specification for Trend Test

Signature Page

This document has been reviewed and approved for release to Configuration Management.

OOl Chief Systems Engineer:

Date:2012-05-22

This document has been reviewed and meets the needs of the OOI Cyberinfrastructure for the
purpose of coding and implementation.

4 1/‘&6{4‘« w
OOICISigningAuthority:L/\] ~ - S

Date: 2012-05-22

Ver 1-01 1341-10007

Data Product Specification for Trend Test

Table of Contents

Y N 13 1 = (o1 T
B2 [0 i {oTe [V} 1 o] o NPT
2.1 Author Contact INformation..........oooue i
2.2 Metadata INformationoooieeiiiee et
2.3 NS UMEBNES .ot e et e e e e e e e e e e e e e e e e et eeeana s
2.4 Literature and Reference DOCUMENES........cocoviiviieeiieieeeee e
b T =11 1011 g To] oo | SO PPTRPTP
R I 1 1=To PO TP PP PP PPPPPPPUPRT
K TRt O =TT 1] T o TSR
3.2 MathematiCal TR OTYcoiiiiiiiiii e
3.3 Known Theoretical LimitationsSooiiiniiiii e
3.4 ReVISION HISIOY ...ccoiiiieee e
4 IMPIEmMENtation ... e
o T O 1Y 1= VA = T
S 1 01 o UL SRR
4.3 ProcessiNg FIOWoouuiiiiiiiiiiie e
I © 111 o 11) - TSP
4.5 Computational and Numerical Considerationsccccccoiiiiiiiiiiiiiiiiiiieee e
4.6 Code Verification and Test Data Sets.........ooovvuiiiiiiiiiiiiee e
Appendix A EXamPle COdE ...

Ver 1-01 1341-10007

Data Product Specification for Trend Test

1 Abstract

This document describes the OOl Trend Test (TRNDTST) quality control algorithm is used to test
time series for whether the data contain a significant portion of a polynomial. The purpose of this
test is to check if a significant fraction of the variability in a time series can be explained by a drift,
possibly interpreted as a sensor drift. This drift is assumed to be a polynomial of specified order,
e.g., 1 for linear drift.

2 Introduction

2.1 Author Contact Information

Please contact Matthias Lankhorst (mlankhorst@ucsd.edu) or the Algorithms Group
(ATBD@lists.oceanobservatories.org) for more information concerning the algorithm and other
items in this document.

2.2 Metadata Information

2.2.1 Data Product Name
n/a

2.2.2 Data Product Abstract (for Metadata)
n/a

2.2.3 Computation Name

The name for this quality control algorithm is
- Trend Test (TRNDTST)

2.2.4 Computation Abstract (for Metadata)

The OOI Trend Test quality control algorithm tests time series for whether the data contain a
significant portion of a polynomial. The algorithm is used to check if a significant fraction of the
variability in a time series can be explained by a drift, where the drift is assumed to be a
polynomial of specified order.

2.2.5 Instrument-Specific Metadata
n/a

2.2.6 Synonyms
n/a

2.2.7 Similar Computations
n/a

2.3 Instruments
n/a

24 Literature and Reference Documents

DCN 1342-000xx Instrument-specific Processing Flow Documents contain flow
diagrams detailing all of the specific algorithms (product, QA and
calibration, QC) necessary to compute all data products from the
instrument at all levels of QA and QC and the order that the algorithms
must be applied

Ver 1-01 1341-10007 Page 1 of 4

Data Product Specification for Trend Test

2.5 Terminology

2.5.1 Definitions
Trend General course or prevailing tendency which time series data may or may not have

2.5.2 Acronyms, Abbreviations and Notations

General OOl acronyms, abbreviations and notations are contained in the Level 2 Reference
Module in the OOI requirements database (DOORS). There are no other acronyms,
abbreviations, or notations for this document.

2.5.3 Variables and Symbols
The following variables and symbols are defined here for use throughout this document.

x in(t) input time series vector
x out (t) output Boolean vector

P(t) polynomial fitted to the input time series in a least squares sense

t time

n order of polynomial

nstd threshold value; if the standard deviation of a time series is reduced by more than

this factor after a polynomial (e.g. linear trend) is subtracted from the values, the
time series will be interpreted as having a trend

3 Theory

3.1 Description

A polynomial of specified order is fitted to the time series. If the standard deviation of the
difference between the original and fitted data is less than that of original data by a specified
threshold factor, the data are considered as containing a significant trend, else not.

3.2 Mathematical Theory

P=p1*X" + p2*X™" + ... + pa*X + Pres

If nstd * Std. Dev. (P(t) - X(t)) < Std. Dev. (X(t)) then
X(t), X(t+1), ..., X(t+N) are taken as containing a significant trend.

3.3 Known Theoretical Limitations
n/a

3.4 Revision History

n/a
4 Implementation

4 1 Overview
This code returns “0” for trend detected and “1” for not. The code uses MatLab functions

“‘isnumeric”, “isvector”, “isscalar”, “isempty”, and “isreal” to check the inputs prior to applying the
algorithm. It uses the MatLab functions “polyfit” to find the coefficients of a polynomial P of
degree n that fits the data, then uses the MatLab function “polyval” to evaluate the polynomial P

at the data points t. If the standard deviation of a time series is reduced by more than the factor

Ver 1-01 1341-10007 Page 2 of 4

Data Product Specification for Trend Test

nstd after the result of polyfit is subtracted from the values, the time series will be interpreted as
having a trend and flagged accordingly.

4.2 Inputs

x _1in(t) inputvector, a numeric real vector.

t time associated with input vector

n polynomial order from TRNDTST look-up table (optional, defaults to 1)

nstd threshold value from TRNDTST look-up table; If the standard deviation of a time

series is reduced by more than this factor after a polynomial (e.g. linear trend) is
subtracted from the values, the time series will be interpreted as having a trend
(optional, defaults to 3)
Inputs x_in and t must be aggregated over a measurement interval of the duration indicated in the
lookup table, i.e. given as vectors of a certain length.

4.3 Processing Flow
Call MatLab function “datagc_polytrendtest™

x _out = datagc polytrendtest(x in,n,nstd)
See code in Appendix A.

4.4 Outputs
x_out Boolean output: 0 where a trend is detected, 1 elsewhere.

The metadata that must be included with the output are the input parameters to this algorithm:
* n, polynomial value used (from TRNDTST look-up table)
* nstd, threshold value used (from TRNDTST look-up table)
e start and end dates of the measurement interval over which the test was run

4.5 Computational and Numerical Considerations
n/a

4.6 Code Verification and Test Data Sets

The algorithm code will be verified using the test data set provided, which contains inputs and
their associated correct outputs. Cl will verify that the algorithm code is correct by checking that
the algorithm pressure output, generated using the test data inputs, is identical to the test data
output.

n=1

nstd = 3

x_in x_out
t [tmin tmax]
0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649 1

1 2 3 4 5 6 7 8 9 10 [1 10]
0.6557 0.2357 1.2491 1.5340 1.4787 1.7577 1.9431 1.7922 2.2555 1.9712 1

1 2 3 4 5 6 7 8 9 10 [1 10]
0.7060 0.5318 1.2769 1.5462 2.0971 3.3235 3.6948 3.8171 4.9502 4.5344 0

1 2 3 4 5 6 7 8 9 10 [1 10]
0 0 0 0 0 0 0 0 0 0 1

1 2 3 4 5 6 7 8 9 10 [1 10]
1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 [1 10]
0.4387 -0.1184 -0.2345 -0.7048 -1.8131 -2.0102 -2.5544 -2.8537 -3.2906 -3.7453 0

1 2 3 4 5 6 7 8 9 10 [1 10]

Ver 1-01 1341-10007 Page 3 of 4

Data Product Specification for Trend Test

In addition to the output (gcflag), the metadata from the QC Lookup table must be included with
the output.

Table 2: Example Trent Test Lookup Table

Time Standard
Instrument Data Data Product interval Polynomial deviation

Class Product Description length in order (n) reduction
days factor (nstd)

HPIES IESPRES Bottom pressure 90 1 5

Note that this table is for example purposes only and some/all values may not be correct.
The official QC lookup tables are kept separately from the DPS and, at the time of writing, do not
exist in their final form.

Ver 1-01 1341-10007 Page 4 of 4

Data Product Specification for Trend Test

Appendix A Example Code

This Appendix contains the code for the Matlab function dataqgc_polytrendtest.mat, as well as
descriptions of the standard Matlab functions used within this function (according to the R2012a
Documentation from Matlab), necessary for performing the Spike Test quality control algorithm as
described herein.

A.1 Polynomial Trend Test Algorithm

Note: This exemplar algorithm does not utilize the time axis, but instead assumes that the input
data are equally spaced in time. The actual implementation should incorporate the time axis for
cases where input data is sampled at non-equal time steps.

% DATAQC_POLYTRENDTEST Data quality control algorithm testing
% if measurements contain a significant portion of a polynomial.
% Returns 1 if this is not the case, else 0.

%

% Time-stamp: <2010-10-29 13:56:46 mlankhorst>

%

% RATIONALE: The purpose of this test is to check if a significant
% fraction of the variability in a time series can be explained

% by a drift, possibly interpreted as a sensor drift. This drift

% is assumed to be a polynomial of order ORD. Use ORD=1 to
% consider a linear drift

%

% METHODOLOGY: The time series DAT is passed to MatLab's POLYFIT
% routine to obtain a polynomial fit PP to DAT, and the

% difference DAT-PP is compared to the original DAT. If the

% standard deviation of (DAT-PP) is less than that of DAT by a
% factor of NSTD, the time series is assumed to contain a

% significant trend (output will be 0), else not (output will be

% 1)

%

% USAGE: OUT=dataqc_polytrendtest(DAT,ORD,NSTD);

%

% OUT: Boolean scalar, 0 if trend is detected, 1 if not.

%

% DAT: Input dataset, a numeric real vector.

% ORD (optional, defaults to 1): Polynomial order.

% NSTD (optional, defaults to 3): Factor by how much the
% standard deviation must be reduced before OUT

% switches from 1to 0

%

function out=dataqc_polytrendtest(varargin);
error(nargchk(1,3,nargin,'struct’))
dat=varargin{1};

if ~isnumeric(dat)

error('DAT must be numeric.")
end
if ~isvector(dat)

error('DAT must be vector.")
end
if ~isreal(dat)

Ver 1-01 1341-10007 Appendix Page A-1

Data Product Specification for Trend Test

error('DAT must be real.")
end

ord=1;
nstd=3;

if nargin==
if ~isempty(varargin{2})
ord=varargin{2};
end
end
if nargin==3
if ~isempty(varargin{2})
ord=varargin{2};
end
if ~isempty(varargin{3})
nstd=varargin{3};
end
end

if ~isnumeric(ord)

error('ORD must be numeric.")
end
if ~isscalar(ord)

error('ORD must be scalar.")
end
if ~isreal(ord)

error('ORD must be real.")
end

if ~isnumeric(nstd)

error('NSTD must be numeric.")
end
if ~isscalar(nstd)

error('NSTD must be scalar.")
end
if ~isreal(nstd)

error('NSTD must be real.")
end

ord=round(abs(ord));
nstd=abs(nstd);

lI=length(dat);
x=[1:1l];

pp=polyfit(x,dat,ord);
datpp=polyval(pp,x);

if (nstd*std(dat-datpp))<std(dat)
out=0;

else
out=1;

end

Ver 1-01 1341-10007

Appendix Page A-2

Data Product Specification for Trend Test

A.2 isnumeric — Determine whether input is numeric array (from polyfun
toolbox)
Syntax

tf = isnumeric (A)

Description

tf = isnumeric (A) returns logical 1 (true) if A is a numeric array and logical 0 (false)
otherwise. For example, sparse arrays and double-precision arrays are numeric, while strings,
cell arrays, and structure arrays and logicals are not.

Examples
Given the following cell array,

C{1,1} = pi; % double

C{1,2} = '"John Doe'; % char array
C{1,3} = 2 + 4i; % complex double
C{1l,4} = ispc; % logical

C{1l,5} = magic(3) % double array
C:

[3.1416] 'John Doe' [2.0000+ 4.00001i] [1][3x3 double]
isnumeric shows thatallbutc{1,2} and C{1, 4} are numeric arrays.
for k = 1:5

x (k) = isnumeric(C{1l,k});
end
X
x =
1 0 1 0 1

A.3 isvector — Determine whether input is vector (from polyfun toolbox)

Syntax
isvector (A)

Description
isvector (&) returns logical 1 (true) if size(2) returns [1 n] or [n 1] with a nonnegative
integer value n, and logical 0 (false) otherwise.

Examples
Test matrix A and its row and column vectors:
A = rand(5);

isvector (A)
ans =
0

isvector (A (3, :))
ans =
1

isvector (A(:, 2))
ans =
1

Ver 1-01 1341-10007 Appendix Page A-3

Data Product Specification for Trend Test

A.4 isscalar — Determine whether input is scalar

Syntax
isscalar (A)

Description
isscalar (2) returns logical 1 (true)if size(a) returns [1 1], and logical 0 (false) otherwise.

Examples
Test matrix A and one element of the matrix:
A = rand(5);

isscalar (A)
ans =
0

isscalar (A(3,2))
ans =
1

A.5 isreal — Check if input is real array

Syntax
TF = isreal (A)

Description

TF = isreal (2) returnslogical 1 (true) if A does not have an imaginary part. It returns logical
0 (false) otherwise. If A has a stored imaginary part of value 0, isreal () returns logical 0
(false).

Note For logical and char data classes, isreal always returns true. For numeric data
types, if A does not have an imaginary part i sreal returns true; if A does have an imaginary
part isreal returns false. For cell, struct, function handle, and object data types,
isreal always returns false.

~isreal (x) returns true for arrays that have at least one element with an imaginary
component. The value of that component can be 0.

Tips

If A is real, complex (A) returns a complex number whose imaginary component is 0, and
isreal (complex (A)) returns false. In contrast, the addition A + 01 returns the real value 2,
and isreal (A + 01) returns true.

If Bisreal and A = complex (B), then A is a complex matrix and isreal (A) returns false,
while A (m:n) returns a real matrix and isreal (A (m:n)) returns true.

Because MATLAB software supports complex arithmetic, certain of its functions can introduce
significant imaginary components during the course of calculations that appear to be limited to
real numbers. Thus, you should use isreal with discretion.

Ver 1-01 1341-10007 Appendix Page A-4

Data Product Specification for Trend Test

Example 1

If a computation results in a zero-value imaginary component, isreal returns true.
x=3+41;

y=5-41i;

isreal (x+y)

ans =

Example 2
These examples use isreal to detect the presence or absence of imaginary numbers in an
array. Let
x = magic(3);
y = complex (x);
isreal (x) returns true because no element of x has an imaginary component.
isreal (x)
ans =
1
isreal (y) returns false, because every element of x has an imaginary component, even
though the value of the imaginary components is 0.
isreal (y)
ans =
0
This expression detects strictly real arrays, i.e., elements with 0-valued imaginary components
are treated as real.
~any (imag(y(:)))

ans =
1

Example 3

Given the following cell array,

C{1} = pi; % double

C{2} = '"John Doe'; % char array

C{3} = 2 + 4i; % complex double

C{4} = ispc; % logical

o

C{5} = magic(3);
C{o} complex (5,0)

double array
complex double

o

CcC =

[3.14106] 'John Doe' [2.0000+ 4.00001] [1] [3x3 double] [5]
isreal showsthatallbutc{1,3} and c{1, 6} are real arrays.
for k = 1:6

x (k) = isreal (C{k}):;
end
X
x =
1 1 0 1 1 0

Ver 1-01 1341-10007 Appendix Page A-5

Data Product Specification for Trend Test

A.6 isempty — Test if array is empty

Syntax
tf = isempty (A)

Description
tf = isempty (A) returns logical true (1) if A is an empty array and logical false (0) otherwise.
An empty array has at least one dimension of size zero, for example, 0-by-0 or 0-by-5.

Examples
B = rand (2,2
B(:,:,:) = [

12);
1
isempty (B)

ans =
1

Ver 1-01 1341-10007 Appendix Page A-6

Data Product Specification for Trend Test

A.7 polyfit — Polynomial curve fitting
Syntax

p = polyfit(x,y,n)

[p,S] = polyfit(x,y,n)

[p,S,mu] = polyfit(x,vy,n)

Description

p = polyfit (x,vy,n) finds the coefficients of a polynomial p (x) of degree n that fits the data,
p(x(i)) toy (i), in aleast squares sense. The result p is a row vector of length n+1 containing
the polynomial coefficients in descending powers:

plx)= pl.\'" + p.z.\'"_l +otpx+p -
[p,S] = polyfit (x,y,n) returns the polynomial coefficients p and a structure s for use with
polyval to obtain error estimates or predictions. Structure s contains fields R, df, and normr,
for the triangular factor from a QR decomposition of the Vandermonde matrix of x, the degrees of
freedom, and the norm of the residuals, respectively. If the data y are random, an estimate of the
covariance matrix of p is (Rinv*Rinv') *normr~2/df, where Rinv is the inverse of R. If the
errors in the data y are independent normal with constant variance, polyval produces error
bounds that contain at least 50% of the predictions.
[p,S,mu] = polyfit (x,v,n) finds the coefficients of a polynomial in
3= x -1l

)

= mean(x) o =std(x) . . .
where #1 =meanixl, g Hy std(x) . mu is the two-element vector [u4,l2]. This centering and

scaling transformation improves the numerical properties of both the polynomial and the fitting
algorithm.

Examples

This example involves fitting the error function, er f (x), by a polynomial in x. This is a risky
project because erf (x) is a bounded function, while polynomials are unbounded, so the fit might
not be very good.

First generate a vector of x points, equally spaced in the interval [0, 2.5]; then evaluate erf (x)

at those points.

x = (0: 0.1: 2.5)";

y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

Ver 1-01 1341-10007 Appendix Page A-7

Data Product Specification for Trend Test

A.8 polyval — Polynomial evaluation

Syntax

y = polyval (p, x)

[y,delta] = polyval(p,x,S)

y = polyval(p,x, [],mu)
[y,delta] = polyval (p,x,S,mu)
Description

y = polyval (p, x) returns the value of a polynomial of degree n evaluated at x. The input
argument p is a vector of length n+1 whose elements are the coefficients in descending powers
of the polynomial to be evaluated.

Y= pixX"+ poxX L+ puX + P

x can be a matrix or a vector. In either case, polyval evaluates p at each element of x.
[y,delta] = polyval (p,x,S) uses the optional output structure s generated by polyfit
to generate error estimates delta. delta is an estimate of the standard deviation of the error in
predicting a future observation at x by p (x) . If the coefficients in p are least squares estimates
computed by polyfit, and the errors in the data input to polyfit are independent, normal,
and have constant variance, then ytdelta contains at least 50% of the predictions of future
observations at x.

_ _ { =(x— “])/ Uy .
y = polyval(p,x,[],mu) Oor [y,delta] = polyval (p,x,S,mu) use ! T

i, = mean(x) iy =std(x)

n

place of x. In this equation, and . The centering and scaling
parameters mu = [u4,u2] are optional output computed by polyfit.

Tips
The polyvalm (p, x) function, with x a matrix, evaluates the polynomial in a matrix sense. See
polyvalm for more information.

Examples

. a2 L

The polynomial P1¥) =37 +2x+1 0 0 aated at x = 5, 7, and 9 with
p=1[321];

polyval (p, [5 7 9])

which results in

ans =

86 162 262

Ver 1-01 1341-10007 Appendix Page A-8

