

DATA PRODUCT SPECIFICATION
FOR GRADIENT TEST

Version 1-00
Document Control Number 1341-10010
2012-07-17

Consortium for Ocean Leadership
1201 New York Ave NW, 4th Floor, Washington DC 20005
www.OceanLeadership.org

in Cooperation with

University of California, San Diego
University of Washington
Woods Hole Oceanographic Institution
Oregon State University
Scripps Institution of Oceanography
Rutgers University

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 ii

Document Control Sheet

Version Date Description Author
0-01 2012-04-27 Initial draft M. Lankhorst
0-02 2012-05-01 Complete example tables and code M. Lankhorst
0-03 2012-06-13 Addressed comments from focused review M. Lankhorst
0-04 2012-07-06 Addressed comments from formal review M. Lankhorst
1-00 2012-07-17 Initial Release E. Chapman

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 iii

Signature Page

This document has been reviewed and approved for release to Configuration Management.

OOI Chief Systems Engineer:

 Date:2012-07-17

This document has been reviewed and meets the needs of the OOI Cyberinfrastructure for the
purpose of coding and implementation.

OOI CI Signing Authority:

 Date: 2012-07-17

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 iv

Table of Contents

1	
 Abstract .. 1	

2	
 Introduction .. 1	

2.1	
 Author Contact Information ... 1	

2.2	
 Metadata Information .. 1	

2.3	
 Instruments ... 2	

2.4	
 Literature and Reference Documents ... 2	

2.5	
 Terminology .. 2	

3	
 Theory .. 2	

3.1	
 Description .. 2	

3.2	
 Mathematical Theory ... 3	

3.3	
 Known Theoretical Limitations .. 3	

3.4	
 Revision History .. 3	

4	
 Implementation .. 3	

4.1	
 Overview ... 3	

4.2	
 Inputs .. 3	

4.3	
 Processing Flow .. 3	

4.4	
 Outputs .. 4	

4.5	
 Computational and Numerical Considerations .. 4	

4.6	
 Code Verification and Test Data Sets ... 5	

Appendix A	
 Example Code .. 1	

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 1 of 6

1 Abstract
This document describes the OOI Gradient Test, which is an automated quality control algorithm
used on various OOI data products. This automated algorithm generates flags for data points
according to whether changes between successive points are within a pre-determined range.

2 Introduction

2.1 Author Contact Information
Please contact Matthias Lankhorst (mlankhorst@ucsd.edu) or the Data Product Specification
lead (DPS@lists.oceanobservatories.org) for more information concerning the algorithm and
other items in this document.

2.2 Metadata Information

2.2.1 Data Product Name
The parameter name for the quantity resulting from this computation is composed of the OOI
Core Data Product Name that is being described, with “_GRADTST_QC” attached:

• [DATAPRODUCT]_GRADTST_QC

The descriptive name is:
• Gradient Test QC Flags

2.2.2 Data Product Abstract (for Metadata)
Quality control flags from gradient test.

2.2.3 Computation Name
The name for this quality control algorithm is: GRADTST

2.2.4 Computation Abstract (for Metadata)
The OOI Gradient Test quality control algorithm generates QC flags indicating whether changes
between successive data points fall within a given range.

2.2.5 Instrument-Specific Metadata
n/a

2.2.6 Synonyms
n/a

2.2.7 Similar Algorithms
The OOI Spike Test (SPKETST, OOI document no. 1341-10006) algorithm identifies individual
outlier points among a small group of data points, which is equivalent to an excessive gradient
between the outlier and the surrounding values. However, while the spike test will only detect
errors if they consist of single points, the gradient test will detect if multiple successive points are
remote from a baseline of presumably good data points.
The OOI Trend Test (TRNDTST, OOI document no. 1341-10007) algorithm identifies if a data set
as a whole, consisting of many data points, contains a trend. In contrast, the gradient test
examines changes between individual data points.

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 2 of 6

2.3 Instruments
This algorithm is applied to OOI data products as per the separate processing flowcharts
documents. The algorithm itself is not instrument-specific.

2.4 Literature and Reference Documents
DCN 1342-000xx Instrument-specific Processing Flow documents contain flow

diagrams detailing all of the specific algorithms (product, QA and
calibration, QC) necessary to compute all data products from the
instrument at all levels of QA and QC and the order that the algorithms
must be applied

2.5 Terminology

2.5.1 Definitions
n/a

2.5.2 Acronyms, Abbreviations and Notations
General OOI acronyms, abbreviations and notations are contained in the Level 2 Reference
Module in the OOI requirements database (DOORS). There are no other acronyms,
abbreviations, or notations for this document.

2.5.3 Variables and Symbols
DAT input data (vector of numeric values)
X input coordinate axis on which DAT is given (vector of numeric values,

strictly increasing)
DDATDX valid range of gradient (two-element vector)
MINDX minimum threshold separation of successive X values (scalar)
STARTDAT alternate start value for DAT in case the first data value is not considered

good
TOLDAT tolerance in DAT for returning from bad to good data, see algorithm

description below
N the number of points in DAT (and X)

OUTDAT a copy of DAT that contains only the values that were actually considered

by the algorithm
OUTX a copy of X that contains only the values that were actually considered by

the algorithm
OUTQC output QC flags denoting the quality of OUTDAT (0 bad, 1 good) as

judged by this algorithm

3 Theory

3.1 Description
The algorithm scans the data points in DAT successively, one-by-one. Starting from a
data point assumed to be good, if the change from this point to the next, divided by the
respective advance in X, is within the range defined by DDATDX, the next point will be
assumed good, else bad. Once a data point is identified as bad, successive data points
will be considered bad until a data point falls within TOLDAT of the last known good data
point.

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 3 of 6

As a default starting point, the first data point is considered good. This default can be
overridden by defining STARTDAT, in which case the first data point that falls within
TOLDAT of STARTDAT will be considered good (and potentially earlier ones as bad).

X must be strictly increasing. In order to avoid small X steps, which can lead to
exaggerated gradients because the X difference is used in the denominator, setting
MINDX to a value greater than zero is an option to remove all data points DAT (and X)
for which X is separated by MINDX or less.

3.2 Mathematical Theory
[included in description and exemplar code]

3.3 Known Theoretical Limitations
From an excessive gradient between two neighboring data points alone, it is not obvious
which of the two points is wrong. This ambiguity needs to be addressed either by using
STARTDAT to force the algorithm towards an absolute, pre-determined value, or by
relying on the default assumption that the first value is always good.

If data points are obtained very closely together in X (meaning X differences are small),
the resulting gradients naturally can become very large due to noise in DAT and the
small difference in X being in the denominator. This can preclude the usefulness of the
algorithm. To avoid flagging random noise on small time scales as bad, MINDAT can be
used to remove such points.

Once an excessive gradient has triggered data points to be flagged as bad, one could
imagine different criteria for later values returning to good. The algorithm here requires
that the later data return to within TOLDAT of the last known good value. However, this
approach might not be appropriate for all situations: e.g. if there is a natural slow trend
during the episode of bad data points, a return to good values might not occur. Such
situations might lead to erroneous flagging of the output data.

The MINDAT option of removing data points that are too close together can lead to
some data points not being analyzed at all, hence upsetting the one-to-one
correspondence of input data DAT and availability of output values OUTQC.

3.4 Revision History
n/a

4 Implementation

4.1 Overview
The implementation in the exemplar code follows the “Description” text: based on inputs
STARTDAT and TOLDAT, it is determined whether the first data point is good or bad.
Then, successive points are scanned one-by-one as outlined above.

4.2 Inputs
• DAT, X: the input data set
• DDATDX, MINDAT, STARTDAT, TOLDAT: from lookup table

4.3 Processing Flow
For general information, see exemplar code given in Appendix A.

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 4 of 6

Case-specific pre-processing: Some use cases require the input data DAT (and
corresponding X) to be assembled from multiple data sets (e.g. density from multiple
CTDMO instruments on a single mooring) or from specific subsets of data (e.g. one
single profile from a mooring profiler or glider). This is called out in the lookup table for
the input parameters.

Post-processing: In cases where OUTDAT and OUTX are not the same as DAT and X,
the missing values in OUTQC need to be filled with dummies.

4.4 Outputs
• OUTQC: Quality control flags. Note: If the computation did not evaluate all input

data DAT (i.e. if OUTDAT and DAT are different), an additional step is needed to
fill the missing values in OUTQC with dummies. This additional step is not
included in the example code below.

The metadata that must be included with the output are

• Input parameters (or links to where they were obtained)

• An identifier/link that relates the output flags to the data product that the flags are
meant to describe

4.5 Computational and Numerical Considerations
n/a

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 5 of 6

4.6 Code Verification and Test Data Sets
The algorithm code will be verified using the test data set provided, which contains
inputs and their associated correct outputs. CI will verify that the algorithm code is
correct by checking that the algorithm output, generated using the test data inputs, is
identical to the test data output.

Table 1: Test Data Sets

Test Case 1:
DAT [3 5 98 99 4]
X [1 2 3 4 5]
DDATDX [-50 50]
MINDX []
STARTDAT []
TOLDAT 5
OUTDAT [3 5 98 99 4]
OUTX [1 2 3 4 5]
OUTQC [1 1 0 0 1]

Test Case 2:
DAT [3 5 98 99 4]
X [1 2 3 4 5]
DDATDX [-50 50]
MINDX []
STARTDAT 100
TOLDAT 5
OUTDAT [3 5 98 99 4]
OUTX [1 2 3 4 5]
OUTQC [0 0 1 1 0]

Test Case 3:
DAT [3 5 98 99 4]
X [1 2 3 3.1 4]
DDATDX [-50 50]
MINDX 0.2
STARTDAT []
TOLDAT 5
OUTDAT [3 5 98 4]
OUTX [1 2 3 4]
OUTQC [1 1 0 1]

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Page 6 of 6

Table 2: Example Lookup Table

Note that this table is for example purposes only and some/all values may not be correct.
The official QC lookup tables are kept separately from the DPS and, at the time of writing, do not
exist in their final form.

Data product used
as input parameter
DAT

Data Product
used as input
parameter X

Units of
DAT

Units
of X DDATDX MINDX STARTDAT TOLDAT

Temperature of sea
water TEMPWAT from
CTDMO instruments

Elapsed time °C s [-0.01 0.01] 30 <empty> 0.1

Density of sea water
from glider (extract
one single dive)

Pressure kg m-3 dbar [0 0.5] 0.1 <empty> 0.1

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Appendix Page A-1

Appendix A Example Code
The following routine is example code run under MatLab:

% DATAQC_GRADIENTTEST Data quality control algorithm testing if
% changes between successive data points fall within a certain
% range.
%
% Time-stamp: <2012-04-26 13:47:12 mlankhorst>
%
% Input data DAT are given as a function of coordinate X. The
% algorithm will flag DAT values as bad if the change
% deltaDAT/deltaX between successive DAT values exceeds thresholds
% given in DDATDX. Once the threshold is exceeded, following DAT
% are considered bad until a DAT value returns to within TOLDAT of
% the last known good value.
%
% It is possible to remove data points that are too close together
% in X coordinates (use MINDX).
%
% By default, the first value of DAT is considered good. To change
% this, use STARTDAT and TOLDAT to set as the first good data point
% the first one that comes within TOLDAT of STARTDAT.
%
% USAGE: [OUTDAT,OUTX,OUTQC]= ...
% dataqc_gradienttest(DAT,X,DDATDX,MINDX,STARTDAT,TOLDAT);
%
% DAT: Input dataset, a numeric real vector.
% X: Coordinate (e.g. time, distance) along which DAT is
% given. Must be of the same size as DAT and strictly
% increasing.
% DDATDX: Two-element vector defining the valid range of
% deltaDAT/deltaX from one point to the next.
% MINDX: Scalar. Minimum deltaX for which this test will
% be applied (data that are less than MINDX apart will be
% deleted). Defaults to zero if NaN/empty.
% STARTDAT: Start value (scalar) of DAT that is presumed
% good. Defaults to first non-NaN value of DAT if NaN/empty.
% TOLDAT: Tolerance value (scalar) for DAT; threshold to within
% which DAT must return to be counted as good, after
% exceeding a DDATDX threshold detected bad data.
%
% OUTDAT: Same as DAT except that NaNs and values not meeting
% MINDX are removed.
% OUTX: Same as X except that NaNs and values not meeting
% MINDX are removed.
% OUTQC: Output quality control flags for OUTDAT. 0 means bad
% data, 1 means good data.
%
%
% EXAMPLES:
%
% Ordinary use, default MINDX and STARTDAT:
%
% [outdat,outx,outqc]= ...
% dataqc_gradienttest([3 5 98 99 4],[1:5],[-50 50],[],[],5)
% outdat = 3 5 98 99 4
% outx = 1 2 3 4 5
% outqc = 1 1 0 0 1
%
%

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Appendix Page A-2

% Alternate STARTDAT to swap good/bad segments:
%
% [outdat,outx,outqc]= ...
% dataqc_gradienttest([3 5 98 99 4],[1:5],[-50 50],[],100,5)
% outdat = 3 5 98 99 4
% outx = 1 2 3 4 5
% outqc = 0 0 1 1 0
%
%
% Alternate MINDX to remove certain X and DAT:
%
% [outdat,outx,outqc]= ...
% dataqc_gradienttest([3 5 98 99 4],[1 2 3 3.1 4], ...
% [-50 50],0.2,[],5)
% outdat = 3 5 98 4
% outx = 1 2 3 4
% outqc = 1 1 0 1
%

function [outdat,outx,outqc]= ...
 dataqc_gradienttest(dat,x,ddatdx,mindx,startdat,toldat);

 % Sanity checks on DAT and X:

 if ((~isvector(dat))|(~isvector(x)))
 error('DAT and X must be vectors.')
 end
 if (length(dat))~=(length(x))
 error('DAT and X must be of equal length.')
 end
 if ~all((diff(x))>0)
 error('X must be strictly monotonically increasing.')
 end

 ff=find((~isnan(dat))&(~isnan(x)));
 dat=dat(ff);
 x=x(ff);

 dat=dat(:)';
 x=x(:)';

 % Check & set MINDX

 if isempty(mindx)
 mindx=nan;
 end
 if isnan(mindx)
 mindx=0;
 end
 if ~isscalar(mindx)
 error('MINDX must be scalar, NaN, or empty.')
 end

 % Apply MINDX

 dx=diff(x);
 ff=find(dx>mindx);
 gg=[1 ff+1];
 dat=dat(gg);
 x=x(gg);

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Appendix Page A-3

 % Confirm that there are still data points left, else abort:

 outqc=zeros(size(dat));
 ll=length(dat);
 if ll<=1
 warning(['DAT and X contain too few points for meaningful' ...
 ' analysis.'])
 outdat=dat;
 outx=x;
 return;
 end

 % Check & set STARTDAT, including output for data point 1:

 if isempty(startdat)
 startdat=nan;
 end
 if isnan(startdat)
 startdat=dat(1);
 outqc(1)=1;
 else
 if abs(startdat-dat(1))<=toldat
 startdat=dat(1);
 outqc(1)=1;
 else
 outqc(1)=0;
 end
 end
 if ~isscalar(startdat)
 error('STARTDAT must be scalar, NaN, or empty.')
 end

 % Main loop, checking for data points 2 through ll:

 ii=2;

 while (ii<=ll)

 if outqc(ii-1)==0

 if abs(dat(ii)-startdat)<=toldat
 outqc(ii)=1;
 startdat=dat(ii);
 else
 outqc(ii)=0;
 end

 else

 tmp=(dat(ii)-dat(ii-1))/(x(ii)-x(ii-1));
 if (tmp<ddatdx(1))|(tmp>ddatdx(2))
 outqc(ii)=0;
 else
 outqc(ii)=1;
 startdat=dat(ii);
 end

 end

Data Product Specification for Gradient Test

Ver 1-00 1341-10010 Appendix Page A-4

 ii=ii+1;
 end

 outqc=logical(outqc);
 outdat=dat;
 outx=x;

