DATA PRODUCT SPECIFICATION
FOR BROADBAND GROUND VELOCITY

Version 1-00
Document Control Number 1341-00090
2012-02-13

Consortium for Ocean Leadership
1201 New York Ave NW, 4th Floor, Washington DC 20005
www.OceanLeadership.org

in Cooperation with

University of California, San Diego
University of Washington
Woods Hole Oceanographic Institution
Oregon State University
Scripps Institution of Oceanography
Rutgers University
Document Control Sheet

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-01</td>
<td>2012-10-05</td>
<td>Initial Release</td>
<td>F. Vernon</td>
</tr>
<tr>
<td>0-02</td>
<td>2012-10-15</td>
<td>Minor revisions</td>
<td>M. Gibney</td>
</tr>
<tr>
<td>0-03</td>
<td>2013-01-08</td>
<td>Updated with comments from Focused Review</td>
<td>F. Vernon</td>
</tr>
<tr>
<td>0-04</td>
<td>2013-01-31</td>
<td>Revisions in preparation for Formal Review</td>
<td>M. Gibney</td>
</tr>
<tr>
<td>1-00</td>
<td>2013-02-13</td>
<td>Initial Release</td>
<td>E. Griffin</td>
</tr>
</tbody>
</table>
Signature Page

This document has been reviewed and approved for release to Configuration Management.

[Signature]

OOI Senior Systems Engineer: __________________________

Date: 2013-02-13

This document has been reviewed and meets the needs of the OOI Cyberinfrastructure for the purpose of coding and implementation.

[Signature]

OOI CI Signing Authority: __________________________

Date: 2013-02-13
Table of Contents

1 Abstract .. 1
2 Introduction .. 1
 2.1 Author Contact Information .. 1
 2.2 Metadata Information ... 1
 2.3 Instruments .. 2
 2.4 Literature and Reference Documents ... 2
 2.5 Terminology ... 2
3 Theory ... 3
 3.1 Description ... 3
 3.2 Mathematical Theory ... 4
 3.3 Known Theoretical Limitations ... 5
 3.4 Revision History ... 5
4 Implementation ... 5
 4.1 Overview ... 5
 4.2 Inputs .. 5
 4.3 Processing Flow .. 5
 4.4 Outputs ... 6
 4.5 Computational and Numerical Considerations .. 6
 4.6 Code Verification and Test Data Set ... 6
Appendix A Example Code ... 8
Appendix B Output Accuracy .. 9
Appendix C Sensor Calibration Effects .. 10
1 Abstract
This document describes the computation used to calculate the OOI Level 1 Ground Velocity (GRNDVEL) core data product, which is the time-series seismic signal sensed from the Broadband Seismometer (OBSBB and OBSBK) instruments. This document is intended to be used by OOI programmers to construct appropriate processes to create the L1 GRNDVEL core data product.

2 Introduction

2.1 Author Contact Information
Please contact the Data Product Specification lead (DPS@lists.oceanobservatories.org) for more information concerning the computation and other items in this document.

2.2 Metadata Information

2.2.1 Data Product Name
The OOI Core Data Product Name for this product is
- GRNDVEL

The OOI Core Data Product Descriptive Name for this product is
- Broadband Ground Velocity

2.2.2 Data Product Abstract (for Metadata)
The OOI Level 1 Broadband Ground Velocity core data product, GRNDVEL, is the time-series seismic signal sensed and digitized by channels of the seismometer digitization system onboard the broadband seismometer (OBSBB and OBSBK) instruments. The seismic signal is obtained in conjunction with the broadband ground acceleration (GRNDACC) and the low frequency acoustic pressure waves (HYDAPLF) data products. The seismic signal is digitized at the same rate(s), and with the same time-stamp, as the acoustic and strong motion signals for greater correlation. The transformation of the L0 seismic signal to L1 will consist of converting digital counts into meters/sec and correction for the applied gain.

2.2.3 Computation Name
N/A

2.2.4 Computation Abstract (for Metadata)
The OOI Level 1 Broadband Ground Velocity (GRNDVEL) core data product is computed by decoding binary format data digitized by the Broadband Seismometer instruments into Broadband Seismic data. The data will be parsed from the OBSBB and OBSBK instruments. After the data is parsed and decoded, a linear calibration factor, Gain, will be applied to transform the L0 digital counts into the L1 core data product GRNDVEL.

2.2.5 Instrument-Specific Metadata
See Section 4.4 for instrument-specific metadata fields that must be part of the output data.

2.2.6 Data Product Synonyms
Synonyms for this data product are
- Broadband Seismic Time Series
2.2.7 Similar Data Products
Broadband Ground Acceleration (GRNDACC)
Short Period Ground Velocity (SGRDVEL)

Additional information regarding these similar products can be found in the OOI Data Product Specifications for GRNDACC (DCN 1341-00100) and for SGRDVEL (DCN 1341-00110).

2.3 Instruments
For information on the instruments from which the L1 Broadband Ground Velocity (GRNDVEL) core data product inputs are obtained, see the OBSBB and OBSBK Processing Flow documents (DCN 1342-00090 and 1342-00100, respectively). These document contains information on the instrument class and make/models; they also describes the flow of data from the OBSBB and OBSBK instruments through all of the relevant QC, calibration, and data product computations and procedures.

OBSBB and OBSBK instruments are deployed at multiple locations on the RSN system. Please see the Instrument Application in the SAF for specifics of instrument locations and platforms.

2.4 Literature and Reference Documents
The electronic files of the reference documents are stored on Alfresco under REFERENCE>Data Product Specification Artifacts (1341-00090_GRNDVEL).

slink2orb.1.pdf slink2orb man page
orbsolver.5.pdf orbsolver interface man page
dbbuild.5.pdf Antelope dbbuild parameter file description
packets.5.pdf Antelope packet description
dm24_mk3.pdf Datalogger configuration description
css30.pdf css3.0 schema description
tar_data tar file of test data
http://www.guralp.com/fir-filter-configuration-of-the-cmg-dm24-mk3/ Guralp fir filters (This file is not stored in Alfresco. Please consult the website directly.)

2.5 Terminology

2.5.1 Definitions
Definitions of general OOI terminology are contained in the Level 2 Reference Module in the OOI requirements database (DOORS). The following terms are defined here for use throughout this document.
Transfer Function - A transfer function is a mathematical representation, in terms of temporal frequency, of the relation between the input and output of a linear time-invariant system with zero initial conditions and zero-point equilibrium.

Poles and Zeros – solutions for Laplace’s transform in a linear time-invariant system.

FIR Filter - a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of finite duration, because it settles to zero in finite time.

Sensor Sensitivity – Nominal conversion factor from ground velocity in the middle of the seismometer passband to Volts.

ADC – Analog to Digital Converter, hardware that provides a conversion at a specified rate and bit-depth. For example in this case, the analog signal will be digitized by the Guralp DM24S3EAM at 24-bit resolution at 1000 Samples per second.

2.5.2 Acronyms, Abbreviations and Notations
General OOI acronyms, abbreviations and notations are contained in the Level 2 Reference Module in the OOI requirements database (DOORS).

3 Theory

3.1 Description
The complete transfer function of a seismometer is provided by the manufacturer. The complete transfer function of the seismometer is specified by a set of poles and zeros.

The seismometer output is digitized by an ADC. An example of a seismometer transfer function is shown in Figure 1. Please refer to Scherbaum (2007) if more details are needed.

The ADC converts the analog voltage output from the seismometer into a digital stream at a maximum rate of 1000 samples per second with a resolution of 24-bits. This digital binary stream will represent the time-series seismic velocity at the seismometer. The output of the ADC will be passed through a cascade of FIR filters to achieve the desired sample rate. In the case of the GRNDVEL sensor, it will produce data streams at 200 sps, 40 sps, and 1 sps. Please refer to Scherbaum (2007) if more details are needed.
3.2 Mathematical Theory

Please refer to Scherbaum (2007)

Figure 1. Typical GRNDVEL Response Curve
3.3 Known Theoretical Limitations
None

3.4 Revision History
No revisions to date.

4 Implementation

4.1 Overview
The output of the OBSBB and OBSBK instruments includes the seismic data and is formatted for transmission via SEEDlink protocol and diverted by the US Navy for inspection using Antelope Orb. After Navy inspection of the data, it is returned, with its time-stamps, to the OOI ION system for storage. Some data may not be returned, for security reasons. The output of the OBSBB and OBSBK instruments comprise SEED blockettes using the SEEDlink protocol. Data are acquired using slink2orb, which takes SEEDlink packets and inserts into an import BRTT Antelope Orb in the US Navy data diversion switch and is not accessible to OOI. Data are exported from the US Navy data diversion switch from another Orb that makes these data available to the OOI. The original SEED blockettes (L0 data) can be pulled from the above mentioned export orb and converted to standard OOI format for L1 data.

All reference documents are listed in section 2.4 above.

This is the same data stream process as for the broadband ground acceleration, short period ground velocity and low frequency acoustic pressure waves data products. See OOI Data Product Specifications for GRNDACC (DCN 1341-00100), SGRDVEL (DCN 1341-00110) and HYDAPLF (DCN 1341-00821) for additional details.

4.2 Inputs
Inputs are: Miniseed packets acquired from an Antelope Orserver.
Dbbuild parameter file for metadata

Input Data Format
• See observer.5.pdf, packets.5.pdf, css3.0.pdf, and the SEED manual referenced in Section 2.4

4.3 Processing Flow
The specific steps necessary to create all calibrated and quality controlled data products for OBSBB and OBSBK core instruments are described in the instrument-specific Processing Flow documents (DCN 1342-00090 and 1342-00100). These processing flow documents contain flow diagrams detailing all of the specific procedures (data product and QC) necessary to compute all levels of data products from the instrument and the order in which these procedures occur.

The processing flow for the broadband seismogram computation is as follows:

1. Build seismic metadata using command
 \texttt{dmbuild -b rsnsp rsnsp-dmbuild}
2. Generate dataless seed using command
 \texttt{mk_dataless_seed rsnsp}
3. Send rsnsp_dataless_seed to IRIS Data Management Center
4. Establish connection to diversion switch export orb at ip_address:port_number
5. Write data to disk using command

\texttt{orb2wf -dbm dbmaster/rsnp ip_address:port_number rsnp}

4.4 Outputs
The output of the calibration computation is
\begin{itemize}
 \item L1 GRNDVEL Time-series in css3.0 database
 \item Attachment – dataless seed file named rsnp_dataless_seed
\end{itemize}

See Appendix B for a discussion of the accuracy of the output.

Automated QC algorithms are performed using range checks, which will generate QC flags for GRNDVEL. See Data Processing Flow Diagrams for OBSBB (DCN1342-00090) and OBSBK (1342-00100) for details.

4.5 Computational and Numerical Considerations

4.5.1 Numerical Programming Considerations
These codes and APIs depend on the Antelope software.

4.5.2 Computational Requirements
Linux platform with Antelope installed

4.6 Code Verification and Test Data Set
Gain = 1500 Volts/meter/sec * 787401.57 counts/volt;

1) Untar the file tar_data
2) Cd data
3) Run program trsample to show L0 data values for first 10 data points

\texttt{trsample -T -n 10 rsn}

\begin{verbatim}
SUM1 LHZ 10 (calib=0.503809) 1/15/2013 (015) 0:00:00.000

1/15/2013 0:00:00.000 3371
1/15/2013 0:00:01.000 3113
1/15/2013 0:00:02.000 2378
1/15/2013 0:00:03.000 2130
1/15/2013 0:00:04.000 2649
1/15/2013 0:00:05.000 2413
1/15/2013 0:00:06.000 2627
1/15/2013 0:00:07.000 3419
1/15/2013 0:00:08.000 2988
1/15/2013 0:00:09.000 2382
1/15/2013 0:00:10.000 2413
\end{verbatim}

4) Run program trsample to show L1 data values for first 10 data points in units of nanometers/sec
palapa% trsample -c -T -n 10 rsn

SUM1 LHZ 10 (calib=0.503809) 1/15/2013 (015) 0:00:00.000

1/15/2013 0:00:00.000 1698.339444574
1/15/2013 0:00:01.000 1568.356775722
1/15/2013 0:00:02.000 1198.057312132
1/15/2013 0:00:03.000 1073.11273122
1/15/2013 0:00:04.000 1334.589495306
1/15/2013 0:00:05.000 1722.522266686
1/15/2013 0:00:06.000 1505.380676472
1/15/2013 0:00:07.000 1200.072547308
1/15/2013 0:00:08.000 1215.690619922
1/15/2013 0:00:09.000 1323.505701838
Appendix A Example Code

None.
Appendix B Output Accuracy

The time-series voltage is digitized at 24-bits resolution, and has an accuracy of better than 1 / (1500 Volts/meter/sec * 787401.57 counts/volt.)

The following requirements in the DOORS database describe broadband ground velocity requirements:

Broadband ground velocity sensors shall be self-calibrated to an RMS residual of 0.05% of 1/3 of full scale.

Broadband seismic measurements shall be time stamped to an accuracy of 100 microseconds/UTC.
Appendix C Sensor Calibration Effects

No calibration is performed on the unfiltered time-series data.