
DATA PRODUCT SPECIFICATION
FOR VELOCITY PROFILE AND ECHO
INTENSITY

Version 2-00
Document Control Number 1341-00750
2020-03-01

Woods Hole Oceanographic Institution
Woods Hole, MA
www.whoi.edu

in Cooperation with

University of Washington
Oregon State University
Rutgers University

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 i

Document Control Sheet

Version Date Description Author
0-01 2012-04-20 Initial Draft H.-J. Kim
0-02 2012-05-04 Revised according to focused review

comments from J. Fram, M. Vardaro, A.
Plueddemann and S. Webster.

H.-J. Kim

0-03 2012-05-08 Revised according to PS call discussion. H.-J. Kim
0-04 2012-05-11 A few addition revisions. S. Webster
0-05 2012-05-17 Coordinate transformation matrices and

magnetic correction matrix are added in
section 4.3. Minor revision has been done
regarding S. Webster’s comments,
especially about beam to earth coordinate
transformation.

H.-J. Kim,
M. Lankhorst

0-06 2012-05-18 Included echo intensity as its own data
product. Included ADCPA metadata info.
Included magnetic variation correction
example.

S. Webster,
M. Vardaro,
H.-J. Kim

0-07 2012-06-27 Addressed comments from 5 day formal
review

H.-J. Kim

0-08 2012-07-02 Clarified where the L0 VELPROF and L0
ECHOINT products are captured.

S. Webster

0-09 2012-07-10 Addressed comments from additional
review; added parameter names and
descriptions.

H.-J. Kim,
S. Webster

1-00 2012-07-20 Initial Release E. Chapman
1-01 2012-10-05 Addition to Theory Description J. Fram
2-00 2020-03-01 Addition of 3-beam solution description W. Ruef

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 ii

Signature Page

This document has been reviewed and approved for release to Configuration
Management.

OOI Senior Systems Engineer:

 Date:2012-07-20

This document has been reviewed and meets the needs of the OOI Cyberinfrastructure
for the purpose of coding and implementation.

 OOI CI Signing Authority:

 Date: 2012-07-20

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 iii

Table of Contents

1 Abstract ... 1
2 Introduction ... 1

2.1 Author Contact Information .. 1
2.2 Metadata Information ... 1
2.3 Instruments ... 5
2.4 Literature and Reference Documents .. 5
2.5 Terminology .. 5

3 Theory ... 6
3.1 Description ... 6
3.2 Mathematical Theory .. 6
3.3 Known Theoretical Limitations ... 7
3.4 Revision History ... 7

4 Implementation ... 7
4.1 Overview .. 7
4.2 Inputs .. 8
4.3 Processing Flow ... 10
4.4 Outputs ... 12
4.5 Computational and Numerical Considerations ... 13
4.6 Code Verification and Test Data Set .. 13

5 Three-Beam Solution .. 17
5.1 Overview .. 17
5.2 Implementation ... 17

Appendix A Example Code ... 1
Appendix B Output Accuracy ... 1
Appendix C Sensor Calibration Effects ... 1

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 1 of 18

1 Abstract
This document describes the computation used to calculate the OOI Level 1 Velocity Profile and
OOI Level 1 Echo Intensity core data product, which is calculated using data from Teledyne RDI
Workhorse ADCP instruments. This DPS applies to instrument classes of ADCPS, ADCPT, and
ADCPA. This document is intended to be used by OOI programmers to construct appropriate
processes to create the L1 velocity profile and the L1 echo intensity data products.

2 Introduction

2.1 Author Contact Information
Please contact help@oceanobservatories.org for more information concerning the computation
and other items in this document.

2.2 Metadata Information

2.2.1 Data Product Name
The OOI Core Data Product Names for these products are

- VELPROF
- ECHOINT

The OOI Core Data Product Descriptive Names for these products are

- Velocity Profile
- Echo Intensity

The velocity profile core data product (VELPROF) is comprised of 3 parameters:

Identifier Name Description L0 Units
 L1 Units
VELPROF-VLE eastward sea water East component in earth coordinates, mm/s
 m/s
 velocity magnetic variation accounted
VELPROF-VLN northward sea water North
component in earth coordinates, mm/s m/s
 velocity magnetic variation accounted
VELPROF-VLU upward sea water Upward component in earth coordinates,
 mm/s m/s
 velocity magnetic variation accounted
VELPROF-EVL error velocity error velocity mm/s
 m/s

In addition, the metadata parameter “percent good” is required for quality control.

Identifier Name Description Units
VELPROF-PCG percent good percent good %

The echo intensity core data product (ECHOINT) is comprised of 4 parameters:

Identifier Name Description L0 Units
ECHOINT-B1 Beam #1 Echo intensity Echo intensity for beam #1 dB
ECHOINT-B2 Beam #2 Echo intensity Echo intensity for beam #2 dB
ECHOINT-B3 Beam #3 Echo intensity Echo intensity for beam #3 dB

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 2 of 18

ECHOINT-B4 Beam #4 Echo intensity Echo intensity for beam #4 dB

2.2.2 Data Product Abstract (for Metadata)
The OOI Level 1 Velocity Profile core data product (VELPROF) from Workhorse ADCPs provides
velocity profile measurements in units of m/s in earth coordinates. ADCPs produce water velocity
by measuring relative radial velocity between transducer and sound scatterers. The L1 VELPROF
data have been corrected for magnetic variation.

The OOI Level 1 Echo Intensity core data product (ECHOINT) from Workhorse ADCPs provides
echo intensity measurements in units of dB. ADCPs produce echo intensity by measuring the
signal strength of the echo returning from the ADCP’s transmit pulse.

2.2.3 Computation Name
N/A

2.2.4 Computation Abstract (for Metadata)
The OOI Level 1 Velocity Profile core data product and the OOI Level 1 Echo Intensity core data
product are computed by decoding data ensembles in either hexadecimal-ASCII or binary format
from ADCP family of instruments into velocity profile.

2.2.5 Instrument-Specific Metadata
Instrument-specific metadata fields that must be part of the L1 output data, both
VELPROF and ECHOINT, are listed in Section 4.4. Echo intensity is stored as a
separate L1 core data product (ECHOINT) and it has the same metadata with the
associated L1 VELPROF data product.

The PD0 output is composed of header, fixed leader data, variable leader data, velocity,
correlation magnitude, echo intensity, percent good, bottom track data, and a data-
validity checksum. Fixed leader and variable leader data need to be decoded to obtain
instrument-specific configuration data including serial number, coordinate system
configuration, bin size, and blanking distance. Details of the PD0 output data format are
explained in the TRDI manual, Workhorse commands and output data format (TRDI
2010b).

Depth of transducer, speed of sound, and water temperature are required to perform
sound speed corrections if data product users request.

Pitch, roll and heading representing ADCP rotation are required to correct the ADCP
data when beam coordinate velocity data are converted into earth coordinates.

Data ensembles include four different kinds of profile data: velocity, echo intensity,
correlation magnitude, and percent good. “Velocity” data are used to produce the L1
VELPROF data product. “Echo intensity” data are the L1 ECHOINT data product.
“Correlation magnitude” and “Percent good” data in each data ensemble need to be
stored as metadata with the L1 VELPROF data product and with the L1 ECHOINT data
product. Correlation magnitude is between 0 and 255 and it represents quality of data.
Percent good is the fraction of data that has passed data quality criteria such as low
correlation, large error velocity, and false target threshold. Both correlation and percent
good are measures of data quality, and they will be used for QA/QC procedures.

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 3 of 18

Table 1. Required metadata for the L1 VELPROF data product and the L1 ECHOINT
data product.

Metadata name Field PD0 data

types
Unit Note

Instrument
frequency

System
configuration

Fixed leader Hz

CPU firmware
version

CPU F/W VER. Fixed leader N/A

CPU firmware
revision

CPU F/W REV. Fixed leader N/A

Beam pattern System
configuration

Fixed leader N/A Concave or
convex

Instrument
orientation

System
configuration

Fixed leader N/A Up- or down-
facing beam

Number of beams Number of beams Fixed leader count The number of
beams used to
calculate
velocity data
(not physical
beams)

Number of cells Number of cells Fixed leader count

Pings per ensemble Pings per
ensemble

Fixed leader count

Depth cell length Depth cell length Fixed leader cm The length of
one depth cell.

Blank after transmit Blank after transmit Fixed leader cm

Coordinate
transform

Coord Transform Fixed leader N/A Earth or beam
coordinates

Distance to the first
bin

Bin 1 distance Fixed leader cm

Instrument serial
number

Serial # Fixed leader N/A

Beam angle Beam angle Fixed leader degrees

Ensemble number Ensemble number Variable
leader

count

Real-time clock
year

RTC year Variable
leader

years

Real-time clock
month

RTC month Variable
leader

months

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 4 of 18

Real-time clock day RTC day Variable
leader

days

Real-time clock
hour

RTC hour Variable
leader

hours

Real-time clock
minute

RTC minute Variable
leader

minutes

Real-time clock
second

RTC second Variable
leader

seconds

Real-time clock
hundredths

RTC hundredths Variable
leader

hundredth
s

Speed of sound Speed of sound Variable
leader

m/s

Depth of transducer Depth of
transducer

Variable
leader

decimeter
s

Heading Heading Variable
leader

0.01
degrees

Pitch Pitch (Tilt 1) Variable
leader

0.01
degrees

Roll Roll (Tilt 2) Variable
leader

0.01
degrees

Salinity Salinity Variable
leader

 This value may
be a manual
setting or a
reading from
the optional
ADCP
conductivity
sensor

Temperature Temperature Variable
leader

Pressure Pressure Variable
leader

deca-
pascal

Correlation
magnitude

Field 1, 2, 3, and 4
for each depth cell

Correlation
magnitude

N/A A linear scale
between 0 and
255

Percent good Field 1, 2, 3, and 4
for each depth cell

Percent good %

2.2.6 Data Product Synonyms
Synonyms for the Velocity Profile data product are

- Ocean Current
- Velocity

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 5 of 18

2.2.7 Similar Data Products
VELTURB from VADCP

2.3 Instruments
The Data Processing Flow document (DCN 1342-00750) for Workhorse ADCP instruments
including ADCPA, ADCPS, and ADCPT describes instrument classes and make/models, and
describes the flow of velocity profile data from ADCPs through all of the relevant QC, calibration,
and data product computations and procedures. The QA/QC section of the Data Processing Flow
document applies to mobile platform data from ADCPA class instruments as well.

Please see https://oceanobservatories.org/instruments/ for specifics of instrument locations and
platforms.

2.4 Literature and Reference Documents
The electronic files of the reference documents are stored on Alfresco under OOI > Reference
Archive > Data Product Specification Artifacts > 1341-00750_VELPROF_ECHOINT

Teledyne RD Instruments (2009) Workhorse Long Ranger data sheet.
Teledyne RD Instruments (2009) Workhorse Sentinel data sheet.
Teledyne RD Instruments (2009) Workhorse Quartermaster data sheet.
Teledyne RD Instruments (2010a). ADCP Coordinate Transformation. P/N 951-6079-00.
Teledyne RD Instruments (2010b). Workhorse commands and output data format. Teledyne RD
Instruments (2011). Acoustic Doppler current profiler principles of operation: A practical primer.

2.5 Terminology

2.5.1 Definitions
Definitions of general OOI terminology are contained in the Level 2 Reference Module in the OOI
requirements database (DOORS). The following terms are defined here for use throughout this
document.

(Radial) beam coordinates: “These are the raw velocity measurements measured independently
by each transducer, in units of millimeters per second. The sense is positive when the motion is
towards the transducer. These axes are not orthogonal.” (TRDI, 2010a, p.16).

Earth axes (geographic or geodetic) coordinates: “Velocity is converted into north, east and
up components.” (TRDI, 2011)

Instrument coordinates: This is a coordinate oriented relative to the transducer head. ADCPs
have four transducers and they are labeled clockwise in the order 3-1-4-2 (TRDI, 2010a, Fig. 3,
p.17). “The X-axis lies in the direction from transducer 1 towards transducer 2 and the Y-axis lies
in the direction from transducer 4 toward transducer 3. The Z-axis lies along the axis of symmetry
of the four beams, pointing away from the water towards the pressure case.” (TRDI, 2010a, p.16).

Data ensemble: “A data ensemble consists of the data collected and averaged during the
ensemble interval. A data ensemble can contain header, leader, velocity, correlation magnitude,
echo intensity, percent-good, and status data.” (TRDI, 2010b)

Correlation data: “A measure of data quality, and its output is scaled in units such that the
expected correlation (given high signal/noise ratio, S/N) is 128.” (TRDI, 2011)

Percent-good data: “A fraction of data passed a variety of criteria. Rejection criteria include low
correlation, large error velocity and fish detection. Default thresholds differ for each ADCP; each
threshold has an associated command.” (TRDI, 2011)

https://oceanobservatories.org/instruments/

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 6 of 18

2.5.2 Acronyms, Abbreviations and Notations
General OOI acronyms, abbreviations and notations are contained in the Level 2 Reference
Module in the OOI requirements database (DOORS).

2.5.3 Variables and Symbols
None

3 Theory

3.1 Description
Velocity profile is measured by Workhorse ADCP instruments including ADCPS, ADCPT, and
ADCPA. These three instrument classes will be referred to generically as ADCP. The L0 input
format from ADCPS and ADCPT are identical. The ADCPA instrument class, which is on the
gliders, produces L1 ECHOINT directly. Velocity Profile data from ADCPA instruments requires
only magnetic variance correction as described in Step 8 of the processing flow. See the Coastal
Glider DPS (DCN 1341-20001) for more details.) An ADCP has four acoustic beams and each
beam can measure a single velocity component parallel to the beam using the Doppler Effect.
Three beams are necessary to obtain three dimensional velocity profiles. The fourth beam is
added to compute a second vertical velocity component to estimate error velocity.

Output data format of Workhorse ADCPs including Quartermaster, Sentinel, and Long Ranger,
can be either hexadecimal-ASCII or binary. The standard PD0 format is selected to be used by
OOI. PD0 is a binary output format, which uses less storage space and has a faster transmission
time than the Hex-ASCII format. The binary L0 velocity profile data product output from the
Workhorse ADCP driver, which consists of data ensembles, must be converted into decimal
format to obtain an L1 velocity profile data product in mm/s.

The two ADCPT Sentinels on Endurance Inshore Submersible Moorings will be used to measure
surface waves, not just mean currents. Raw wave data are in the same PD0 format as current
data, so VELPROF and ECHOINT data products may be calculated from these data in the same
way as other PD0 data. The difference in the raw currents and waves data are that the currents
ADCP data are saved as ensemble averages (e.g., average values over a few minutes of water
pings) while the waves data stores information from every ping so that wave orbital velocities can
be calculated in post-processing. Typical surface wave periods are 5-20 seconds, so the ADCP
must sample for wave orbital velocities every few seconds or more often, which is why every ping
is saved instead of ensemble averages. The WAVSTAT DPS (DCN 1341-00450) delineates how
to calculate waves statistics from these data.

3.2 Mathematical Theory
The transformation matrix A (TRDI, 2010a, p.11) from beam coordinates to instrument
coordinates is

𝐴𝐴 = �

𝑐𝑐 ∗ 𝑎𝑎 −𝑐𝑐 ∗ 𝑎𝑎 0 0
0 0 −𝑐𝑐 ∗ 𝑎𝑎 𝑐𝑐 ∗ 𝑎𝑎
𝑏𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏
𝑑𝑑 𝑑𝑑 −𝑑𝑑 −𝑑𝑑

�, (Equation 1)

where * denotes multiplication. The constants in Equation 1 are defined as

a=1/[2*sin(𝜃𝜃)]
b=1/[4*cos(𝜃𝜃)]
c=+1 for a convex transducer head, -1 for concave
d=a/sqrt(2),

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 7 of 18

where / denotes division. Both Workhorse Long Ranger and Workhorse Quartermaster have
convex transducer head, thus c=+1. The 𝜃𝜃 is a beam angle, which is fixed at 20° for both
Workhorse Long Ranger and Workhorse Quartermaster.

The rotation matrix M (TRDI, 2010a, p.19) transforms velocity profiles from instrument
coordinates to earth coordinates (Equation 2).

𝑀𝑀 = �
cos𝐻𝐻 sin𝐻𝐻 0
−sin𝐻𝐻 cos𝐻𝐻 0

0 0 1
� ∗ �

1 0 0
0 cos𝑃𝑃 −sin𝑃𝑃
0 sin𝑃𝑃 cos𝑃𝑃

� ∗ �
cos𝑅𝑅 0 sin𝑅𝑅

0 1 0
−sin𝑅𝑅 0 cos𝑅𝑅

�, (Equation 2)

where * denotes matrix multiplication. H, R, and P are the heading, roll, and pitch angles. Note
that R and P in Equation 2 may not be the same as the measured roll and the measured pitch
depending on the ADCP orientation configuration. If the ADCP has upward-looking orientation,
180° must be added to the roll angle measured by internal tilt sensor (Equation 3) before applying
the matrix M. And the pitch angle needs to be modified using Equation 4.

R = Tilt2 for downward-looking ADCP
 Tilt2 +180° for upward-looking ADCP (Equation 3)

P = arctan[tan(Tilt1)*cos(Tilt2)], (Equation 4)

where Tilt1 is the measured pitch and Tilt2 is the measured roll recorded in data ensembles.

The rotation matrix B rotates a vector by 𝜃𝜃 degrees clockwise (Equation 5).

𝐵𝐵 = � cos𝜃𝜃 sin𝜃𝜃

−sin𝜃𝜃 cos𝜃𝜃�. (Equation 5)

3.3 Known Theoretical Limitations
Too few or too many scattering particles can limit the range of the ADCP. The ADCP cannot
measure current if scatterers move only perpendicular to each beam, although this is practically
not an issue since each beam is 20 degree apart.

3.4 Revision History
The DPA for the ADCP was updated in November 2019 to add functionality for a three-beam
solution in the event that one of the four beams has failed or is compromised (further details
provided in Section 5 below).

4 Implementation

4.1 Overview
The L0 input format from instrument classes ADCPS, ADCPT is identical and these classes will
be referred to generically as ADCP. (The instrument class ADCPA, on the gliders, produces L1
ECHOINT directly. Velocity Profile data from ADCPA instruments requires only magnetic variance
correction as described in Step 8 of the processing flow. See the Coastal Glider DPS (DCN 1341-
20001) for more details.) Decoding ADCP hexadecimal data ensembles converts the L0 velocity
profile data product into an L1 velocity profile data product in units of m/s. The example MatLAB
code written by Professor Rich Pawlowicz (http://www.eos.ubc.ca/~rich/#RDADCP,
rich@eos.ubc.ca) is provided in Appendix A with his permission. Note that this is research code
and is provided as an example for processing ADCP data, but does not handle bad data well as
noted in the code comments. Not all functions in the example code apply to the creation of the
OOI core data product VELPROF.

http://www.eos.ubc.ca/%7Erich/#RDADCP

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 8 of 18

After each data collection cycle, the WorkHorse ADCP immediately sends a data ensemble that
always includes header, fixed leader data, and variable leader data by default, and that may
include velocity profile, correlation profile, echo intensity profile, percent good profile, status
profile, bottom track data, MicroCAT data, etc. by user’s choice.

Velocity profile L0 data product output can be either raw single-ping data or multi-ping averaged
data in either radial beam coordinates or earth coordinates. Single-ping and multi-ping data are
treated identically and are not differentiated in this processing specification. However, single-ping
data will not go through the QA/QC steps using percent good data because percent good is not
available for single-ping data. The L1 velocity profile data product is created by converting the L0
data product to decimal in units of m/s. In addition, if the L0 data product is in beam coordinates,
it is transformed using matrices in section 3.2.to obtain North-South, East-West and vertical
velocities in earth coordinates after decoding raw binary ADCP data files.

4.2 Inputs
Inputs are:

• L0 VELPROF velocity data product output from the ADCP driver

Input Data Format:

The most common standard data format is PD0, which provides all available information possible.
PD0 is the format provided by ADCPA, ADCPS, and ADCPT instrument classes. However,
ADCPs with inductive modems (ADCP Series G in ADCPT class and ADCP Series L in ADCPS
class) will have the PD12 output format in the near real time telemetry to reduce the record size.
PD12 data have the same decoding process steps as PD0 data, but the QA/QC steps are not the
same since PD12 data do not provide echo intensity, correlation magnitude, and percent good
data. See the ADCP Processing Flow document (DCN 1342-00750) and associated QC lookup
tables for details of the QA/QC steps. The near real time PD12 data have no ECHOINT data
product. However, the internally recorded data of those ADCPs with inductive modems are PD0;
these data will be available for post-processing once the instrument is recovered.

PD0 standard output format is provided in Figure 1.

Figure 1. PD0 standard output data buffer format (fig. 8 in TRDI 2010b, p. 129)

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 9 of 18

Example: An ADCP data output with seven data types (Fixed Leader, Variable Leader, Velocity,
Correction magnitude, Echo intensity, percent good data, and Bottom track) and 30 depth cells in
PD0 standard output format has 841 bytes of data per ensemble. The Velocity data is the L0
VELPROF data product.

Data formats of important data types are given in Figure 2 (header) and Figure 3 (velocity). Full
description of data format for other data types can be found at TRDI (2010b).

Figure 2. Header data format (figure 9 in TRDI, 2010b)

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 10 of 18

Figure 3. Velocity data format (fig. 12 in TRDI, 2010b)

4.3 Processing Flow
The decoding process recommended by the manufacture is summarized here. Details can be
found in TRDI (2010b, p.183, section 7. How to decode an ADCP ensemble) cited in Section 2.4.
All the necessary algorithms for data product and QC procedures, and the order that the
algorithms need to be applied can be found in the ADCP Processing Flow document (DCN 1342-
00750).

The processing flow for the velocity profile computation is as follows:

Step 1:
Locate the header data by locating the header ID number. All data types have a specific and
unique ID number. The most common IDs are listed in Table 2.

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 11 of 18

Table 2. Common data format IDs (Table 47 in TRDI, 2010b, p.183)

Step 2:
Calculate the “checksum” by summing total number of bytes in the ensemble excluding the 2-byte
of checksum. Then read the 2-byte checksum at the end of the ensemble and compare it to the
value you calculated. If they match, then the data ensemble is valid. If they do not match, search
for the next header ID number occurrence. One example of header data format of PD0 output
data format is given below (TRDI, 2010b).

Step 3:
Read the number of data types in the header data. Data types can be fixed leader, variable
leader, velocity, echo intensity, correlation, percent good, etc.

Step 4:
Read the offset to each data type in the header data.

Step 5:
Locate the data ID type of velocity and metadata described in section 2.2.5. Then confirm the
data ID numbers. ID numbers for all data types need to be identified to decode an ADCP
ensemble.

Step 6:
Find what each byte represents in the particular data type. Record the hexadecimal data from the
Velocity data type as the L0 VELPROF data product. Record the hexadecimal data from the Echo
Intensity data type as the L0 ECHOINT data product. Convert the targeted hexadecimal bytes to
decimal to obtain the velocity profile data product in mm/s, the L1 ECHOINT echo intensity data
product in dB, and associated metadata. Additional metadata can be found inside of the fixed
leader and variable leader as described in section 2.2.5. No further processing is required for the
L1 ECHOINT data product.

Step 7:
If the velocity profile data product is in beam coordinates, it needs to be transformed to earth
coordinates by applying the transformation matrix A (Equation 1) and the rotation matrix M
(Equation 2).

Velocity data for each depth cell consist of VEL1, VEL2, VEL3, and VEL4 that refer to beam1
(b1), beam2 (b2), beam3 (b3), and beam4 (b4) velocity in beam coordinates. Percent good
should be used for each beam to determine if three-beam or four-beam solution should be
applied (see Section 5).

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 12 of 18

�

𝑢𝑢
𝑣𝑣
𝑤𝑤
𝑒𝑒

� = 𝐴𝐴 ∗ �

𝑏𝑏1
b2
b3
b4

�,

where * denotes matrix multiplication and the matrix A is defined in Equation 1 in Section 3.2.

Now another transformation matrix M (Equation 2) needs to be applied to rotate velocity profiles
from instrument coordinates, [u,v,w] to earth coordinates, [uu,vv,ww].

�
𝑢𝑢𝑢𝑢
𝑣𝑣𝑣𝑣
𝑤𝑤𝑤𝑤

� = 𝑀𝑀 ∗ �
𝑢𝑢
𝑣𝑣
𝑤𝑤
�,

where * denotes matrix multiplication and the matrix M is defined in Equation 2 in Section 3.2.

Step 8:
Apply magnetic variation correction to velocity profile components using Equation 5. The 𝜃𝜃 in
Equation 5 is magnetic declination estimate, which is provided by the Implementing Organization
for each deployment. It also can be calculated at NOAA national geophysical data center website
(http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp). Positive magnetic variation means
that magnetic north is east of true north and negative one means that magnetic north is west of
true north. Inputs are horizontal velocity profiles in earth coordinates (uu,vv).

�𝑈𝑈V� = 𝐵𝐵 ∗ �𝑢𝑢𝑢𝑢vv�,
where * denotes matrix multiplication and the matrix B is defined in Equation 5 in Section 3.2.

4.4 Outputs
The output of the velocity profile computation is

• L1 VELPROF Velocity profile in mm/s in earth coordinates with magnetic variation
correction applied

• L1 ECHOINT Echo intensity in dB

The metadata that must be included with the L1 VELPROF and with the L1 ECHOINT data
product are listed below. See section 2.2.5 for details.

• Instrument frequency
• Beam pattern (concave or convex)
• Instrument orientation (up- or down- facing)
• Number of beams
• Number of cells
• Pings per ensemble
• Depth cell length
• Blank after transmit
• Coordinate transform
• Distance to the first bin
• Instrument serial number
• Beam angle
• Ensemble number
• RTC year, RTC month, RTC day, RTC hour, RTC minute, RTC second, RTC

hundredths
• Speed of sound
• Depth of transducer
• Heading, pitch (Tilt1), roll (Tilt2)

http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 13 of 18

• Salinity
• Temperature
• Pressure
• Correlation magnitude
• Percent good data

Automated QC algorithms are performed using correlation magnitude, percent good data
and error velocity, which will generate QC flags for VELPROF (see DCN 1342-00750
Data Processing Flow Diagram for ADCP).

No automated QC is required for the L1 ECHOINT data product.

Note that the ADCPA instrument class produces L1 VELPROF and L1 ECHOINT
directly. This data product must still be associated with the metadata described here,
and have the automated QC processing steps applied.

See Appendix B for a discussion of the accuracy of the output.
http://www.teos-10.org/

4.5 Computational and Numerical Considerations

4.5.1 Numerical Programming Considerations
There are no numerical programming considerations for this computation. No special numerical
methods are used.

4.5.2 Computational Requirements
None.

4.6 Code Verification and Test Data Set
A raw binary ADCP output file (mooredwh-bbdf.000) and MatLAB code (adcpdemo.m) written by
Professor Rich Pawlowicz are placed on Alfresco at
OOI > Reference Archive > Data Product Specification Artifacts > 1341-
00750_VELPROF_ECHOINT > VELPROF_Code_adcp_matlab.zip
for code verification and test. This code is implemented into the processing stream of NEPTUNE
Canada (“regional-scale underwater ocean observatory network”,
http://www.neptunecanada.ca/).

The raw binary ADCP output has been decoded and saved on Alfresco (adcp_demo_allEns.mat),
which includes velocity profiles in beam coordinates, echo intensity and metadata. The velocity
profiles in beam coordinates are transformed into instrument coordinates first using the Matlab
function beam2ins (Equation 1), and then into earth coordinates using the Matlab function
ins2earth (Equation 2). The output file is placed on Alfresco (adcp_demo_beam2earth.mat).

The test binary file (mooredwh-bbdf.000) has been read by the example code (adcpdemo.m). It
includes 256 ensembles (ensemble number from 300 to 555) and 85 depth cells. The output data
(adcp_demo_allEns.mat) have been read using Matlab and every field of the data is listed below.

 name: 'adcp'
 config: [1x1 struct]
 mtime: [1x256 double]
 number: [1x256 double]
 pitch: [1x256 double]

http://www.teos-10.org/
http://www.neptunecanada.ca/

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 14 of 18

 roll: [1x256 double]
 heading: [1x256 double]
 pitch_std: [1x256 double]
 roll_std: [1x256 double]
 heading_std: [1x256 double]
 depth: [1x256 double]
 temperature: [1x256 double]
 salinity: [1x256 double]
 pressure: [1x256 double]
 pressure_std: [1x256 double]
 east_vel: [85x256 double]
 north_vel: [85x256 double]
 vert_vel: [85x256 double]
 error_vel: [85x256 double]
 corr: [85x4x256 double]
 status: [85x4x256 double]
 intens: [85x4x256 double]
 bt_range: [4x256 double]
 bt_vel: [4x256 double]
 bt_corr: [4x256 double]
 bt_ampl: [4x256 double]
 bt_perc_good: [4x256 double]
 perc_good: [85x4x255 double]

The example code stores four components of velocity profiles in the output file, i.e. east_vel,
north_vel, vert_vel, and error_vel. They refer to eastward velocity, northward velocity, vertical
velocity, and error velocity in earth coordinates and beam 1, beam 2, beam 3, beam 4 velocities
in beam coordinates. In both cases, they are in units of m/s.

The velocity profiles in beam coordinates of the first ensemble (ensemble number 300) from the
first to the tenth depth cells are shown below extracted from adcp_demo_allEns.mat in units of
m/s.

Beam1 (m/s) Beam2 (m/s) Beam3 (m/s) Beam4 (m/s)
-0.0300 0.1800 -0.3980 -0.2160
-0.2950 -0.1320 -0.4360 -0.6050
-0.5140 0.2130 -0.1310 -0.0920
-0.2340 0.3090 -0.4730 -0.0580
-0.1880 0.2910 -0.4430 0.4840
0.2030 0.0490 0.1880 -0.0050

-0.3250 0.1880 -0.1680 0.3380
0.3050 0.3730 0.2910 0.1750

-0.2040 -0.0020 -0.1790 -0.0800
-0.2940 0.1720 0.0080 -0.5490

The velocity profiles in beam coordinates are transformed using the Matlab functions, beam2ins
and ins2earth (provided below). Output data are stored in adcp_demo_beam2earth.mat in units
of m/s.

uu (m/s) vv (m/s) ww (m/s)
0.2175 -0.3367 0.1401

-0.2814 -0.1815 0.3977
-0.1002 -1.0522 0.1870
0.4831 -0.8676 0.1637
1.2380 -0.8919 0.0091

-0.2455 0.2585 -0.1290

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 15 of 18

0.6218 -0.8497 0.0334
-0.1807 -0.0873 -0.3017
0.0992 -0.3073 0.1384

-0.9063 -0.5461 0.1966

To apply magnetic variation correction described in step 8 (section 4.3) to horizontal velocity
vectors, obtain magnetic variation from the Implementing Organization for each platform and for
each deployment. The NOAA magnetic field calculators (http://www.ngdc.noaa.gov/geomag-
web/#declination) can also provide magnetic variation. Inputs for the website are date, latitude
and longitude.

For instance, horizontal velocity vector in earth coordinate in ensemble number 303 of the
example data file (adcp_demo_beam2earth.mat) is (uu,vv) = (0.4413,0. 1719) in m/sec. If we
apply magnetic variation at Station Papa (50°N, 145°W), which is 16.9604° on May 1st, 2012,
horizontal velocity vector is transformed to (U,V) = (0.4722, 0.0357) in m/sec (Figure 4) using the
Matlab function mag_var.

Figure 4. An example of applying the magnetic variation correction.

function [u,v,w,e] = beam2ins(b1,b2,b3,b4)
%
% input:
% b1, b2, b3, b4: velocity profiles in beam coordinates
%
% output:
% velocity profiles (u,v,w,e) in instrument coordinates

-0.1 0 0.1 0.2 0.3 0.4 0.5

-0.1

0

0.1

0.2

0.3

0.4

E-W velocity (m/s)

N
-S

 v
el

oc
ity

 (m
/s

)

Horizontal velocity in earth coord
Magnetic variation correction applied

True North

Magnetic North

http://www.ngdc.noaa.gov/geomag-web/#declination
http://www.ngdc.noaa.gov/geomag-web/#declination

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 16 of 18

%
%

theta = 20/180*pi;% 20 deg
a = 1./(2.*sin(theta));
b = 1./(4.*cos(theta));
c = 1;% convex (Long Ranger & Quartermaster)
d = a./sqrt(2);

u = c.*a.*(b1-b2);
v = c.*a.*(b4-b3);
w = b.*(b1+b2+b3+b4);
e = d.*(b1+b2-b3-b4);

function [uu,vv,ww] = ins2earth(u,v,w,H,tilt1,tilt2,adcpmode)
%
% USAGE
% [uu,vv,ww] = ins2earth(u,v,w,H,tilt1,tilt2,adcpmode)
%
%
% input
% u,v,w: velocity profile in instrument coordinates
% tilt1: measured pitch, degree
% tilt2: measured roll, degree
% adcpmode: 0 for downward looking ADCP, 1 for upward looking ADCP
%
% output
% uu,vv,ww: velocity profile earth coordinates
%

if adcpmode,
 R = tilt2+180;
else
 R = tilt2;
end

Rrad = deg2rad(R);
Hrad = deg2rad(H);
t1rad = deg2rad(tilt1);
t2rad = deg2rad(tilt2);

P = atan(tan(t1rad).*cos(t2rad));% rad

M1 = [cos(Hrad) sin(Hrad) 0; -sin(Hrad) cos(Hrad) 0;0 0 1];
M2 = [1 0 0;0 cos(P) -sin(P); 0 sin(P) cos(P)];
M3 = [cos(Rrad) 0 sin(Rrad); 0 1 0; -sin(Rrad) 0 cos(Rrad)];

for i=1:length(u),
 vel(i,:) = M1*M2*M3*[u(i);v(i);w(i)];
end

uu = vel(:,1);
vv = vel(:,2);
ww = vel(:,3);

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 17 of 18

function radvalue = deg2rad(degvalue)
radvalue = degvalue./180*pi;

5 Three-Beam Solution

5.1 Overview

In the event that a single beam fails, as determined by the percent good variable for that beam
falling below 25%, a three-beam solution can be implemented if the percent good for the other
three beams exceeds 25%. The three-beam solution, as described in TRDI, 2010a, p. 14,
implements this solution by “replacing the bad radial beam velocity with a valuel calculated from
the last row of the instrument transformation matrix so as to force the error velocity to zero….The
X,Y, and Z components in the instrument coordinates are then calculated in the usual way using
the first three rows of the instrument transformation matrix.”

The following example, excerpted from TRDI, 2010a, p. 14, provides the necessary equations for
a three-beam solution assuming Beam 4 has failed.

“As aforementioned, since we only have 3 beams available we cannot compute the error velocity
as we do not have redundancy in the data anymore. Therefore, we can zero the error velocity:”

e = 0 (Equation 6)

Replacing the error velocity in the last row of the transformation matrix (TRDI, 2010a, p. 11,
Equation 9):

b4 = b1 + b2 + b3 (Equation 7)

With the bad beam now expressed as a function of the other beams, the transformation matrix
can be expressed as:

�

𝑋𝑋
𝑌𝑌
𝑍𝑍
𝑒𝑒

� = �

𝑐𝑐𝑐𝑐(𝑏𝑏1 − 𝑏𝑏2)
𝑐𝑐𝑐𝑐(𝑏𝑏1 + 𝑏𝑏2 + 2𝑏𝑏3)

2𝑏𝑏(𝑏𝑏1 + 𝑏𝑏2)
0

� (Equation 8)

5.2 Implementation
The three-beam solution was implemented in the data product algorithm for the ADCP in the
“adcp_functions.py” script in the OOI ion-functions library. The code was based on the above
recommendations from Teledyne RD Instruments, as noted in TRDI, 2010a, p.14. Input to
functions is now required to include percent good for each beam in order to evaluate whether a
four-beam or three-beam solution is possible. This code also includes logic to determine if more
than one beam is bad per depth cell, and if so returns NaN.

Relevant code, excerpted from adcp_beam2ins:

x, y, z, e = adcp_beam2ins(b1, b2, b3, b4, pg1, pg2, pg3, pg4)

 where

 x = x axis velocity profiles in instrument coordinates [mm s-1]
 y = y axis velocity profiles in instrument coordinates [mm s-1]

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Page 18 of 18

 z = z axis velocity profiles in instrument coordinates [mm s-1]
 e = error velocity profiles [mm s-1]

 b1 = beam 1 velocity profiles in beam coordinates [mm s-1]
 b2 = beam 2 velocity profiles in beam coordinates [mm s-1]
 b3 = beam 3 velocity profiles in beam coordinates [mm s-1]
 b4 = beam 4 velocity profiles in beam coordinates [mm s-1]
 pg1 = percent good estimate for beam 1 [percent]
 pg2 = percent good estimate for beam 2 [percent]
 pg3 = percent good estimate for beam 3 [percent]
 pg4 = percent good estimate for beam 4 [percent]

 # raw beam velocities, set to correct shape

 b1 = np.atleast_2d(b1)
 b2 = np.atleast_2d(b2)
 b3 = np.atleast_2d(b3)
 b4 = np.atleast_2d(b4)

 # percentage of good pings for each beam per depth cell, set to correct shape
 pg1 = np.atleast_2d(pg1)
 pg2 = np.atleast_2d(pg2)
 pg3 = np.atleast_2d(pg3)
 pg4 = np.atleast_2d(pg4)

using the vendor specified percent good floor of 25%, create masked arrays with fill values set to compute a 3-beam solution, if applicable.

 ma1 = np.ma.masked_where(pg1 < 25, b1)
 bm1 = ma1.filled((b2 - b3 - b4) * -1)
 ma2 = np.ma.masked_where(pg2 < 25, b2)
 bm2 = ma2.filled((b1 - b3 - b4) * -1)
 ma3 = np.ma.masked_where(pg3 < 25, b3)
 bm3 = ma3.filled(b1 + b2 - b4)
 ma4 = np.ma.masked_where(pg4 < 25, b4)
 bm4 = ma4.filled(b1 + b2 - b3)

sum across the masked arrays to determine if more than 1 beam is bad per depth cell, if so we cannot compute a 3-beam solution and need
to set the fill value to a NaN.

 mad = np.ma.dstack((ma1, ma2, ma3, ma4)) # stack the masked arrays in depth

 mas = np.ma.count_masked(mad, axis=2) # count the number of depth cells masked in the depth stacked array

 # using the above, reset the raw beams. fill with 3-beam if applicable, otherwise use a NaN
 bm1 = np.ma.filled(np.ma.masked_where(mas > 1, bm1), ADCP_FILLVALUE)
 bm2 = np.ma.filled(np.ma.masked_where(mas > 1, bm2), ADCP_FILLVALUE)
 bm3 = np.ma.filled(np.ma.masked_where(mas > 1, bm3), ADCP_FILLVALUE)
 bm4 = np.ma.filled(np.ma.masked_where(mas > 1, bm4), ADCP_FILLVALUE)

 bm1, bm2, bm3, bm4 = replace_fill_with_nan(ADCP_FILLVALUE, bm1, bm2, bm3, bm4)

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-1

Appendix A Example Code
This Appendix contains MatLAB code for reading raw binary ADCP data files written by Professor
Rich Pawlowicz (http://www.eos.ubc.ca/~rich/#RDADCP, rich@eos.ubc.ca). This code has been
used extensively by the oceanographic community. A copy of the code (rdradcp.m) has been
placed on Alfresco at
OOI > Reference Archive > Data Product Specification Artifacts > 1341-
00750_VELPROF_ECHOINT > VELPROF_Code_adcp_matlab.zip. The demo input file,
mooredwh-bbdf.000 is in beam coordinates in PD0 data format. Note that output of this example
code is always named east_vel, north_vel, vert_vel, and error_vel regardless of the coordinate
system. Thus, if velocity profile is in beam coordinates, actual meaning of those velocity profile
variable names is beam1, beam2, beam3, and beam4 radial velocity.

function [adcp,cfg,ens,hdr]=rdradcp(name,varargin);
% RDRADCP Read (raw binary) RDI ADCP files,
% ADCP=RDRADCP(NAME) reads the raw binary RDI BB/Workhorse ADCP file NAME and
% puts all the relevant configuration and measured data into a data structure
% ADCP (which is self-explanatory). This program is designed for handling data
% recorded by moored instruments (primarily Workhorse-type but can also read
% Broadband) and then downloaded post-deployment. For vessel-mount data I
% usually make p-files (which integrate nav info and do coordinate transformations)
% and then use RDPADCP.
%
% This current version does have some handling of VMDAS, WINRIVER, and WINRIVER2 output
% files, but it is still 'beta'. There are (inadequately documented) timestamps
% of various kinds from VMDAS, for example, and caveat emptor on WINRIVER2 NMEA data.
%
% [ADCP,CFG]=RDRADCP(...) returns configuration data in a
% separate data structure.
%
% Various options can be specified on input:
% [..]=RDRADCP(NAME,NUMAV) averages NUMAV ensembles together in the result.
% [..]=RDRADCP(NAME,NUMAV,NENS) reads only NENS ensembles (-1 for all).
% [..]=RDRADCP(NAME,NUMAV,[NFIRST NEND]) reads only the specified range
% of ensembles. This is useful if you want to get rid of bad data before/after
% the deployment period.
%
% Notes- sometimes the ends of files are filled with garbage. In this case you may
% have to rerun things explicitly specifying how many records to read (or the
% last record to read). I don't handle bad data very well. Also - in Aug/2007
% I discovered that WINRIVER-2 files can have a varying number of bytes per
% ensemble. Thus the estimated number of ensembles in a file (based on the
% length of the first ensemble and file size) can be too high or too low.
%
% - I don't read in absolutely every parameter stored in the binaries;
% just the ones that are 'most' useful. Look through the code if
% you want to get other things.
%
% - chaining of files does not occur (i.e. read .000, .001, etc.). Sometimes
% a ping is split between the end of one file and the beginning of another.
% The only way to get this data is to concatentate the files, using
% cat file1.000 file1.001 > file1 (unix)
% copy file1.000/B+file2.001/B file3.000/B (DOS/Windows)
%
% (as of Dec 2005 we can probably read a .001 file)
%
% - velocity fields are always called east/north/vertical/error for all
% coordinate systems even though they should be treated as
% 1/2/3/4 in beam coordinates etc.
%
% String parameter/option pairs can be added after these initial parameters:

http://www.eos.ubc.ca/%7Erich/#RDADCP

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-2

%
% 'baseyear' : Base century for BB/v8WH firmware (default to 2000).
%
% 'despike' : ['no' | 'yes' | 3-element vector]
% Controls ensemble averaging. With 'no' a simple mean is used
% (default). With 'yes' a mean is applied to all values that fall
% within a window around the median (giving some outlier rejection).
% This is useful for noisy data. Window sizes are [.3 .3 .3] m/s
% for [horiz_vel vert_vel error_vel] values. If you want to
% change these values, set 'despike' to the 3-element vector.
%
% R. Pawlowicz (rich@eos.ubc.ca) - 17/09/99

% R. Pawlowicz - 17/Oct/99
% 5/july/00 - handled byte offsets (and mysterious 'extra" bytes) slightly better, Y2K
% 5/Oct/00 - bug fix - size of ens stayed 2 when NUMAV==1 due to initialization,
% hopefully this is now fixed.
% 10/Mar/02 - #bytes per record changes mysteriously,
% tried a more robust workaround. Guess that we have an extra
% 2 bytes if the record length is even?
% 28/Mar/02 - added more firmware-dependent changes to format; hopefully this
% works for everything now (put previous changes on firmer footing?)
% 30/Mar/02 - made cfg output more intuitive by decoding things.
% - An early version of WAVESMON and PARSE which split out this
% data from a wave recorder inserted an extra two bytes per record.
% I have removed the code to handle this but if you need it see line 509
% 29/Nov/02 - A change in the bottom-track block for version 4.05 (very old!).
% 29/Jan/03 - Status block in v4.25 150khzBB two bytes short?
% 14/Oct/03 - Added code to at least 'ignore' WinRiver GPS blocks.
% 11/Nov/03 - VMDAS navigation block, added hooks to output
% navigation data.
% 26/Mar/04 - better decoding of nav blocks
% - better handling of weird bytes at beginning and end of file
% (code fixes due to Matt Drennan).
% 25/Aug/04 - fixes to "junk bytes" handling.
% 27/Jan/05 - even more fixed to junk byte handling (move 1 byte at a time rather than
% two for odd lengths.
% 29/Sep/2005 - median windowing done slightly incorrectly in a way which biases
% results in a negative way in data is *very* noisy. Now fixed.
%
% 28/Dc/2005 - redid code for recovering from ensembles that mysteriously change length, added
% 'checkheader' to make a complete check of ensembles.
% Feb/2006 - handling of firmware version 9 (navigator)
% 23/Aug/2006 - more firmware updates (16.27)
% 23/Aug2006 - ouput some bt QC stiff
% 29/Oct/2006 - winriver bottom track block had errors in it - now fixed.
% 30/Oct/2006 - pitch_std, roll_std now uint8 and not int8 (thanks Felipe pimenta)
% 13/Aug/2007 - added Rio Grande (firmware v 10),
% better handling of those cursed winriver ASCII NMEA blocks whose
% lengths change unpredictably.
% skipping the inadequately documented 2022 WINRIVER-2 NMEA block
% 13/Mar/2010 - firmware version 50 for WH.

num_av=5; % Block filtering and decimation parameter (# ensembles to block together).
nens=-1; % Read all ensembles.
century=2000; % ADCP clock does not have century prior to firmware 16.05.
vels='no'; % Default to simple averaging

lv=length(varargin);
if lv>=1 & ~isstr(varargin{1}),
 num_av=varargin{1}; % Block filtering and decimation parameter (# ensembles to block together).

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-3

 varargin(1)=[];
 lv=lv-1;
 if lv>=1 & ~isstr(varargin{1}),
 nens=varargin{1};
 varargin(1)=[];
 lv=lv-1;
 end;
end;

% Read optional args
while length(varargin)>0,
 switch varargin{1}(1:3),
 case 'bas',
 century = varargin{2};
 case 'des',
 if isstr(varargin{2}),
 if strcmp(varargin{2},'no'), vels='no';
 else vels=[.3 .3 .3]; end;
 else
 vels=varargin{2};
 end;
 otherwise,
 error(['Unknown command line option ->' varargin{1}]);
 end;
 varargin([1 2])=[];
end;

% Check file information first

naminfo=dir(name);

if isempty(naminfo),
 fprintf('ERROR******* Can''t find file %s\n',name);
 return;
end;

fprintf('\nOpening file %s\n\n',name);
fd=fopen(name,'r','ieee-le');

% Read first ensemble to initialize parameters

[ens,hdr,cfg,pos]=rd_buffer(fd,-2); % Initialize and read first two records
if ~isstruct(ens) & ens==-1,
 disp('No Valid data found');
 adcp=[];
 return;
end;
fseek(fd,pos,'bof'); % Rewind

if (cfg.prog_ver<16.05 & cfg.prog_ver>5.999) | cfg.prog_ver<5.55,
 fprintf('***** Assuming that the century begins year %d (info not in this firmware version) \n\n',century);
else
 century=0; % century included in clock.
end;

dats=datenum(century+ens.rtc(1,:),ens.rtc(2,:),ens.rtc(3,:),ens.rtc(4,:),ens.rtc(5,:),ens.rtc(6,:)+ens.rtc(7,:)/100
);
t_int=diff(dats);
fprintf('Record begins at %s\n',datestr(dats(1),0));

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-4

fprintf('Ping interval appears to be %s\n',datestr(t_int,13));

% Estimate number of records (since I don't feel like handling EOFs correctly,
% we just don't read that far!)

% Now, this is a puzzle - it appears that this is not necessary in
% a firmware v16.12 sent to me, and I can't find any example for
% which it *is* necessary so I'm not sure why its there. It could be
% a leftoever from dealing with the bad WAVESMON/PARSE problem (now
% fixed) that inserted extra bytes.
% ...So its out for now.
%if cfg.prog_ver>=16.05, extrabytes=2; else extrabytes=0; end; % Extra bytes
extrabytes=0;

nensinfile=fix(naminfo.bytes/(hdr.nbyte+2+extrabytes));
fprintf('\nEstimating %d ensembles in this file\n',nensinfile);

if length(nens)==1,
 if nens==-1,
 nens=nensinfile;
 end;
 fprintf(' Reading %d ensembles, reducing by a factor of %d\n',nens,num_av);
else
 fprintf(' Reading ensembles %d-%d, reducing by a factor of %d\n',nens,num_av);
 fseek(fd,(hdr.nbyte+2+extrabytes)*(nens(1)-1),'cof');
 nens=diff(nens)+1;
end;

% Number of records after averaging.

n=fix(nens/num_av);
fprintf('Final result %d values\n',n);

if num_av>1,
 if isstr(vels),
 fprintf('\n Simple mean used for ensemble averaging\n');
 else
 fprintf('\n Averaging after outlier rejection with parameters [%f %f %f]\n',vels);
 end;
end;

% Structure to hold all ADCP data
% Note that I am not storing all the data contained in the raw binary file, merely
% things I think are useful.

switch cfg.sourceprog,
 case 'WINRIVER',
 adcp=struct('name','adcp','config',cfg,'mtime',zeros(1,n),'number',zeros(1,n),'pitch',zeros(1,n),...
 'roll',zeros(1,n),'heading',zeros(1,n),'pitch_std',zeros(1,n),...
 'roll_std',zeros(1,n),'heading_std',zeros(1,n),'depth',zeros(1,n),...
 'temperature',zeros(1,n),'salinity',zeros(1,n),...
 'pressure',zeros(1,n),'pressure_std',zeros(1,n),...
 'east_vel',zeros(cfg.n_cells,n),'north_vel',zeros(cfg.n_cells,n),'vert_vel',zeros(cfg.n_cells,n),...
 'error_vel',zeros(cfg.n_cells,n),'corr',zeros(cfg.n_cells,4,n),...
 'status',zeros(cfg.n_cells,4,n),'intens',zeros(cfg.n_cells,4,n),...
 'bt_range',zeros(4,n),'bt_vel',zeros(4,n),...
 'bt_corr',zeros(4,n),'bt_ampl',zeros(4,n),'bt_perc_good',zeros(4,n),...
 'nav_mtime',zeros(1,n),...
 'nav_longitude',zeros(1,n),'nav_latitude',zeros(1,n));

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-5

 case 'VMDAS',
 adcp=struct('name','adcp','config',cfg,'mtime',zeros(1,n),'number',zeros(1,n),'pitch',zeros(1,n),...
 'roll',zeros(1,n),'heading',zeros(1,n),'pitch_std',zeros(1,n),...
 'roll_std',zeros(1,n),'heading_std',zeros(1,n),'depth',zeros(1,n),...
 'temperature',zeros(1,n),'salinity',zeros(1,n),...
 'pressure',zeros(1,n),'pressure_std',zeros(1,n),...
 'east_vel',zeros(cfg.n_cells,n),'north_vel',zeros(cfg.n_cells,n),'vert_vel',zeros(cfg.n_cells,n),...
 'error_vel',zeros(cfg.n_cells,n),'corr',zeros(cfg.n_cells,4,n),...
 'status',zeros(cfg.n_cells,4,n),'intens',zeros(cfg.n_cells,4,n),...
 'bt_range',zeros(4,n),'bt_vel',zeros(4,n),...
 'bt_corr',zeros(4,n),'bt_ampl',zeros(4,n),'bt_perc_good',zeros(4,n),...
 'nav_smtime',zeros(1,n),'nav_emtime',zeros(1,n),...
 'nav_slongitude',zeros(1,n),'nav_elongitude',zeros(1,n),...
 'nav_slatitude',zeros(1,n),'nav_elatitude',zeros(1,n),'nav_mtime',zeros(1,n));
 otherwise
 adcp=struct('name','adcp','config',cfg,'mtime',zeros(1,n),'number',zeros(1,n),'pitch',zeros(1,n),...
 'roll',zeros(1,n),'heading',zeros(1,n),'pitch_std',zeros(1,n),...
 'roll_std',zeros(1,n),'heading_std',zeros(1,n),'depth',zeros(1,n),...
 'temperature',zeros(1,n),'salinity',zeros(1,n),...
 'pressure',zeros(1,n),'pressure_std',zeros(1,n),...
 'east_vel',zeros(cfg.n_cells,n),'north_vel',zeros(cfg.n_cells,n),'vert_vel',zeros(cfg.n_cells,n),...
 'error_vel',zeros(cfg.n_cells,n),'corr',zeros(cfg.n_cells,4,n),...
 'status',zeros(cfg.n_cells,4,n),'intens',zeros(cfg.n_cells,4,n),...
 'bt_range',zeros(4,n),'bt_vel',zeros(4,n),...
 'bt_corr',zeros(4,n),'bt_ampl',zeros(4,n),'bt_perc_good',zeros(4,n));
end;

% Calibration factors for backscatter data

clear global ens
% Loop for all records
for k=1:n,

 % Gives display so you know something is going on...

 if rem(k,50)==0, fprintf('\n%d',k*num_av);end;
 fprintf('.');

 % Read an ensemble

 ens=rd_buffer(fd,num_av);

 if ~isstruct(ens), % If aborting...
 fprintf('Only %d records found..suggest re-running RDRADCP using this parameter\n',(k-1)*num_av);
 fprintf('(If this message preceded by a POSSIBLE PROGRAM PROBLEM message, re-run using
%d)\n',(k-1)*num_av-1);
 break;
 end;

dats=datenum(century+ens.rtc(1,:),ens.rtc(2,:),ens.rtc(3,:),ens.rtc(4,:),ens.rtc(5,:),ens.rtc(6,:)+ens.rtc(7,:)/100
);
 adcp.mtime(k)=median(dats);
 adcp.number(k) =ens.number(1);
 adcp.heading(k) =mean(ens.heading);
 adcp.pitch(k) =mean(ens.pitch);
 adcp.roll(k) =mean(ens.roll);
 adcp.heading_std(k) =mean(ens.heading_std);
 adcp.pitch_std(k) =mean(ens.pitch_std);
 adcp.roll_std(k) =mean(ens.roll_std);
 adcp.depth(k) =mean(ens.depth);

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-6

 adcp.temperature(k) =mean(ens.temperature);
 adcp.salinity(k) =mean(ens.salinity);
 adcp.pressure(k) =mean(ens.pressure);
 adcp.pressure_std(k)=mean(ens.pressure_std);

 if isstr(vels),
 adcp.east_vel(:,k) =nmean(ens.east_vel ,2);
 adcp.north_vel(:,k) =nmean(ens.north_vel,2);
 adcp.vert_vel(:,k) =nmean(ens.vert_vel ,2);
 adcp.error_vel(:,k) =nmean(ens.error_vel,2);
 else
 adcp.east_vel(:,k) =nmedian(ens.east_vel ,vels(1),2);
 adcp.north_vel(:,k) =nmedian(ens.north_vel,vels(1),2);
 adcp.vert_vel(:,k) =nmedian(ens.vert_vel ,vels(2),2);
 adcp.error_vel(:,k) =nmedian(ens.error_vel,vels(3),2);
 end;

 adcp.corr(:,:,k) =nmean(ens.corr,3); % added correlation RKD 9/00
 adcp.status(:,:,k) =nmean(ens.status,3);

 adcp.intens(:,:,k) =nmean(ens.intens,3);
 adcp.perc_good(:,:,k) =nmean(ens.percent,3); % felipe pimenta aug. 2006

 adcp.bt_range(:,k) =nmean(ens.bt_range,2);
 adcp.bt_vel(:,k) =nmean(ens.bt_vel,2);

 adcp.bt_corr(:,k)=nmean(ens.bt_corr,2); % felipe pimenta aug. 2006
 adcp.bt_ampl(:,k)=nmean(ens.bt_ampl,2); % "
 adcp.bt_perc_good(:,k)=nmean(ens.bt_perc_good,2);% "

 switch cfg.sourceprog,
 case 'WINRIVER',
 adcp.nav_mtime(k)=nmean(ens.smtime);
 adcp.nav_longitude(k)=nmean(ens.slongitude);
 adcp.nav_latitude(k)=nmean(ens.slatitude);
 case 'VMDAS',
 adcp.nav_smtime(k) =ens.smtime(1);
 adcp.nav_emtime(k) =ens.emtime(1);
 adcp.nav_slatitude(k)=ens.slatitude(1);
 adcp.nav_elatitude(k)=ens.elatitude(1);
 adcp.nav_slongitude(k)=ens.slongitude(1);
 adcp.nav_elongitude(k)=ens.elongitude(1);
 adcp.nav_mtime(k)=nmean(ens.nmtime);
 end;
end;

fprintf('\n');
fprintf('Read to byte %d in a file of size %d bytes\n',ftell(fd),naminfo.bytes);
if ftell(fd)+hdr.nbyte<naminfo.bytes,
 fprintf('-->There may be another %d ensembles unread\n',fix((naminfo.bytes-ftell(fd))/(hdr.nbyte+2)));
end;

fclose(fd);

%--
function valid=checkheader(fd);

%disp('checking');
valid=0;
numbytes=fread(fd,1,'int16'); % Following the header bytes is numbytes
if numbytes>0, % and we move forward numbytes>0

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-7

 status=fseek(fd,numbytes-2,'cof');
 if status==0,
 cfgid=fread(fd,2,'uint8');
 if length(cfgid)==2, % will Skip the last ensemble (sloppy code)
 fseek(fd,-numbytes-2,'cof');
 %% fprintf([dec2hex(cfgid(1)) ' ' dec2hex(cfgid(2)) '\n']);
 if cfgid(1)==hex2dec('7F') & cfgid(2)==hex2dec('7F') % and we have *another* 7F7F
 valid=1; % ...ONLY THEN it is valid.
 end;
 end;
 end;
 else
 fseek(fd,-2,'cof');
 end;

%-------------------------------------
function [hdr,pos]=rd_hdr(fd);
% Read config data
% Changed by Matt Brennan to skip weird stuff at BOF (apparently
% can happen when switching from one flash card to another
% in moored ADCPs).

cfgid=fread(fd,2,'uint8');
nread=0;
while (cfgid(1)~=hex2dec('7F') | cfgid(2)~=hex2dec('7F')) | ~checkheader(fd),
 nextbyte=fread(fd,1,'uint8');
 pos=ftell(fd);
 nread=nread+1;
 if isempty(nextbyte), % End of file
 disp('EOF reached before finding valid cfgid');
 hdr=NaN;
 return;
 end
 cfgid(2)=cfgid(1);cfgid(1)=nextbyte;
 if mod(pos,1000)==0
 disp(['Still looking for valid cfgid at file position ' num2str(pos) '...'])
 end
end;

pos=ftell(fd)-2;
if nread>0,
 disp(['Junk found at BOF...skipping ' int2str(nread) ' bytes until ']);
 disp(['cfgid=' dec2hex(cfgid(1)) dec2hex(cfgid(2)) ' at file pos ' num2str(pos)])
end;

hdr=rd_hdrseg(fd);

%-------------------------------------
function cfg=rd_fix(fd);
% Read config data

cfgid=fread(fd,1,'uint16');
if cfgid~=hex2dec('0000'),
 warning(['Fixed header ID ' cfgid 'incorrect - data corrupted or not a BB/WH raw file?']);
end;

cfg=rd_fixseg(fd);

%--------------------------------------

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-8

function [hdr,nbyte]=rd_hdrseg(fd);
% Reads a Header

hdr.nbyte =fread(fd,1,'int16');
fseek(fd,1,'cof');
ndat=fread(fd,1,'int8');
hdr.dat_offsets =fread(fd,ndat,'int16');
nbyte=4+ndat*2;

%-------------------------------------
function opt=getopt(val,varargin);
% Returns one of a list (0=first in varargin, etc.)
if val+1>length(varargin),
 opt='unknown';
else
 opt=varargin{val+1};
end;

%
%-------------------------------------
function [cfg,nbyte]=rd_fixseg(fd);
% Reads the configuration data from the fixed leader

%%disp(fread(fd,10,'uint8'))
%%fseek(fd,-10,'cof');

cfg.name='wh-adcp';
cfg.sourceprog='instrument'; % default - depending on what data blocks are
 % around we can modify this later in rd_buffer.
cfg.prog_ver =fread(fd,1,'uint8')+fread(fd,1,'uint8')/100;

% 8,9,16 - WH navigator
% 10 -rio grande
% 15, 17 - NB
% 19 - REMUS, or customer specific
% 11- H-ADCP
% 31 - Streampro
% 34 - NEMO
% 50 - WH, no bottom track (built on 16.31)
% 51 - WH, w/ bottom track
% 52 - WH, mariner

if fix(cfg.prog_ver)==4 | fix(cfg.prog_ver)==5,
 cfg.name='bb-adcp';
elseif fix(cfg.prog_ver)==8 | fix(cfg.prog_ver)==9 | fix(cfg.prog_ver)==10 | fix(cfg.prog_ver)==16 ...
 | fix(cfg.prog_ver)==50 | fix(cfg.prog_ver)==51 | fix(cfg.prog_ver)==52,
 cfg.name='wh-adcp';
elseif fix(cfg.prog_ver)==14 | fix(cfg.prog_ver)==23, % phase 1 and phase 2
 cfg.name='os-adcp';
else
 cfg.name='unrecognized firmware version' ;
end;

config =fread(fd,2,'uint8'); % Coded stuff
cfg.config =[dec2base(config(2),2,8) '-' dec2base(config(1),2,8)];
 cfg.beam_angle =getopt(bitand(config(2),3),15,20,30);
 cfg.numbeams =getopt(bitand(config(2),16)==16,4,5);
 cfg.beam_freq =getopt(bitand(config(1),7),75,150,300,600,1200,2400,38);
 cfg.beam_pattern =getopt(bitand(config(1),8)==8,'concave','convex'); % 1=convex,0=concave
 cfg.orientation =getopt(bitand(config(1),128)==128,'down','up'); % 1=up,0=down
cfg.simflag =getopt(fread(fd,1,'uint8'),'real','simulated'); % Flag for simulated data
fseek(fd,1,'cof');

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-9

cfg.n_beams =fread(fd,1,'uint8');
cfg.n_cells =fread(fd,1,'uint8');
cfg.pings_per_ensemble=fread(fd,1,'uint16');
cfg.cell_size =fread(fd,1,'uint16')*.01; % meters
cfg.blank =fread(fd,1,'uint16')*.01; % meters
cfg.prof_mode =fread(fd,1,'uint8'); %
cfg.corr_threshold =fread(fd,1,'uint8');
cfg.n_codereps =fread(fd,1,'uint8');
cfg.min_pgood =fread(fd,1,'uint8');
cfg.evel_threshold =fread(fd,1,'uint16');
cfg.time_between_ping_groups=sum(fread(fd,3,'uint8').*[60 1 .01]'); % seconds
coord_sys =fread(fd,1,'uint8'); % Lots of bit-mapped info
 cfg.coord=dec2base(coord_sys,2,8);
 cfg.coord_sys =getopt(bitand(bitshift(coord_sys,-3),3),'beam','instrument','ship','earth');
 cfg.use_pitchroll =getopt(bitand(coord_sys,4)==4,'no','yes');
 cfg.use_3beam =getopt(bitand(coord_sys,2)==2,'no','yes');
 cfg.bin_mapping =getopt(bitand(coord_sys,1)==1,'no','yes');
cfg.xducer_misalign=fread(fd,1,'int16')*.01; % degrees
cfg.magnetic_var =fread(fd,1,'int16')*.01; % degrees
cfg.sensors_src =dec2base(fread(fd,1,'uint8'),2,8);
cfg.sensors_avail =dec2base(fread(fd,1,'uint8'),2,8);
cfg.bin1_dist =fread(fd,1,'uint16')*.01; % meters
cfg.xmit_pulse =fread(fd,1,'uint16')*.01; % meters
cfg.water_ref_cells=fread(fd,2,'uint8');
cfg.fls_target_threshold =fread(fd,1,'uint8');
fseek(fd,1,'cof');
cfg.xmit_lag =fread(fd,1,'uint16')*.01; % meters
nbyte=40;

if fix(cfg.prog_ver)==8 | fix(cfg.prog_ver)==10 | fix(cfg.prog_ver)==16 ...
 | fix(cfg.prog_ver)==50 | fix(cfg.prog_ver)==51 | fix(cfg.prog_ver)==52,

 if cfg.prog_ver>=8.14, % Added CPU serial number with v8.14
 cfg.serialnum =fread(fd,8,'uint8');
 nbyte=nbyte+8;
 end;

 if cfg.prog_ver>=8.24, % Added 2 more bytes with v8.24 firmware
 cfg.sysbandwidth =fread(fd,2,'uint8');
 nbyte=nbyte+2;
 end;

 if cfg.prog_ver>=16.05, % Added 1 more bytes with v16.05 firmware
 cfg.syspower =fread(fd,1,'uint8');
 nbyte=nbyte+1;
 end;

 if cfg.prog_ver>=16.27, % Added bytes for REMUS, navigators, and HADCP
 cfg.navigator_basefreqindex=fread(fd,1,'uint8');
 nbyte=nbyte+1;
 cfg.remus_serialnum=fread(fd,4,'uint8');
 nbyte=nbyte+4;
 cfg.h_adcp_beam_angle=fread(fd,1,'uint8');
 nbyte=nbyte+1;
 end;

elseif fix(cfg.prog_ver)==9,

 if cfg.prog_ver>=9.10, % Added CPU serial number with v8.14
 cfg.serialnum =fread(fd,8,'uint8');
 nbyte=nbyte+8;
 cfg.sysbandwidth =fread(fd,2,'uint8');

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-10

 nbyte=nbyte+2;
 end;

elseif fix(cfg.prog_ver)==14 | fix(cfg.prog_ver)==23,

 cfg.serialnum =fread(fd,8,'uint8'); % 8 bytes 'reserved'
 nbyte=nbyte+8;

end;

% It is useful to have this precomputed.

cfg.ranges=cfg.bin1_dist+[0:cfg.n_cells-1]'*cfg.cell_size;
if cfg.orientation==1, cfg.ranges=-cfg.ranges; end

%-----------------------------
function [ens,hdr,cfg,pos]=rd_buffer(fd,num_av);

% To save it being re-initialized every time.
global ens hdr

% A fudge to try and read files not handled quite right.
global FIXOFFSET SOURCE

% If num_av<0 we are reading only 1 element and initializing
if num_av<0,
 SOURCE=0;
end;
% This reinitializes to whatever length of ens we want to average.
if num_av<0 | isempty(ens),
 FIXOFFSET=0;
 n=abs(num_av);
 [hdr,pos]=rd_hdr(fd);
 if ~isstruct(hdr), ens=-1; cfg=NaN; return; end;
 cfg=rd_fix(fd);
 fseek(fd,pos,'bof');
 clear global ens
 global ens

ens=struct('number',zeros(1,n),'rtc',zeros(7,n),'BIT',zeros(1,n),'ssp',zeros(1,n),'depth',zeros(1,n),'pitch',zeros(
1,n),...
 'roll',zeros(1,n),'heading',zeros(1,n),'temperature',zeros(1,n),'salinity',zeros(1,n),...
 'mpt',zeros(1,n),'heading_std',zeros(1,n),'pitch_std',zeros(1,n),...
 'roll_std',zeros(1,n),'adc',zeros(8,n),'error_status_wd',zeros(1,n),...
 'pressure',zeros(1,n),'pressure_std',zeros(1,n),...
 'east_vel',zeros(cfg.n_cells,n),'north_vel',zeros(cfg.n_cells,n),'vert_vel',zeros(cfg.n_cells,n),...
 'error_vel',zeros(cfg.n_cells,n),'intens',zeros(cfg.n_cells,4,n),'percent',zeros(cfg.n_cells,4,n),...
 'corr',zeros(cfg.n_cells,4,n),'status',zeros(cfg.n_cells,4,n),...
 'bt_range',zeros(4,n),'bt_vel',zeros(4,n),...
 'bt_corr',zeros(4,n),'bt_ampl',zeros(4,n),'bt_perc_good',zeros(4,n),...
 'smtime',zeros(1,n),'emtime',zeros(1,n),'slatitude',zeros(1,n),...
 'slongitude',zeros(1,n),'elatitude',zeros(1,n),'elongitude',zeros(1,n),...
 'nmtime',zeros(1,n),'flags',zeros(1,n));
 num_av=abs(num_av);
end;

k=0;
while k<num_av,

 % This is in case junk appears in the middle of a file.

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-11

 num_search=6000;

 id1=fread(fd,2,'uint8');

 search_cnt=0;
 while search_cnt<num_search & ((id1(1)~=hex2dec('7F') | id1(2)~=hex2dec('7F')) | ~checkheader(fd)),
 search_cnt=search_cnt+1;
 nextbyte=fread(fd,1,'uint8');
 if isempty(nextbyte), % End of file
 disp(['EOF reached after ' num2str(search_cnt) ' bytes searched for next valid ensemble start'])
 ens=-1;
 return;
 end;
 id1(2)=id1(1);id1(1)=nextbyte;
% fprintf([dec2hex(id1(1)) '--' dec2hex(id1(2)) '\n']);
 end;
 if search_cnt==num_search,
 error(sprintf('Searched %d entries...Not a workhorse/broadband file or bad data encountered: ->
%x',search_cnt,id1));
 elseif search_cnt>0
 disp(['Searched ' int2str(search_cnt) ' bytes to find next valid ensemble start'])
 end

 startpos=ftell(fd)-2; % Starting position.

 % Read the # data types.
 [hdr,nbyte]=rd_hdrseg(fd);
 byte_offset=nbyte+2;
%% fprintf('# data types = %d\n ',(length(hdr.dat_offsets)));
%% fprintf('Blocklen = %d\n ',hdr.nbyte);
 % Read all the data types.
 for n=1:length(hdr.dat_offsets),

 id=dec2hex(fread(fd,1,'uint16'),4);
%% fprintf('ID=%s SOURCE=%d\n',id,SOURCE);

 % handle all the various segments of data. Note that since I read the IDs as a two
 % byte number in little-endian order the high and low bytes are exchanged compared to
 % the values given in the manual.
 %
 winrivprob=0;

 switch id,
 case '0000', % Fixed leader
 [cfg,nbyte]=rd_fixseg(fd);
 nbyte=nbyte+2;

 case '0080' % Variable Leader
 k=k+1;
 ens.number(k) =fread(fd,1,'uint16');
 ens.rtc(:,k) =fread(fd,7,'uint8');
 ens.number(k) =ens.number(k)+65536*fread(fd,1,'uint8');
 ens.BIT(k) =fread(fd,1,'uint16');
 ens.ssp(k) =fread(fd,1,'uint16');
 ens.depth(k) =fread(fd,1,'uint16')*.1; % meters
 ens.heading(k) =fread(fd,1,'uint16')*.01; % degrees
 ens.pitch(k) =fread(fd,1,'int16')*.01; % degrees
 ens.roll(k) =fread(fd,1,'int16')*.01; % degrees
 ens.salinity(k) =fread(fd,1,'int16'); % PSU
 ens.temperature(k) =fread(fd,1,'int16')*.01; % Deg C

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-12

 ens.mpt(k) =sum(fread(fd,3,'uint8').*[60 1 .01]'); % seconds
 ens.heading_std(k) =fread(fd,1,'uint8'); % degrees
 ens.pitch_std(k) =fread(fd,1,'uint8')*.1; % degrees
 ens.roll_std(k) =fread(fd,1,'uint8')*.1; % degrees
 ens.adc(:,k) =fread(fd,8,'uint8');
 nbyte=2+40;

 if strcmp(cfg.name,'bb-adcp'),

 if cfg.prog_ver>=5.55,
 fseek(fd,15,'cof'); % 14 zeros and one byte for number WM4 bytes
 cent=fread(fd,1,'uint8'); % possibly also for 5.55-5.58 but
 ens.rtc(:,k)=fread(fd,7,'uint8'); % I have no data to test.
 ens.rtc(1,k)=ens.rtc(1,k)+cent*100;
 nbyte=nbyte+15+8;
 end;

 elseif strcmp(cfg.name,'wh-adcp'), % for WH versions.

 ens.error_status_wd(k)=fread(fd,1,'uint32');
 nbyte=nbyte+4;;

 if fix(cfg.prog_ver)==8 | fix(cfg.prog_ver)==10 | fix(cfg.prog_ver)==16 ...
 | fix(cfg.prog_ver)==50 | fix(cfg.prog_ver)==51 | fix(cfg.prog_ver)==52,

 if cfg.prog_ver>=8.13, % Added pressure sensor stuff in 8.13
 fseek(fd,2,'cof');
 ens.pressure(k) =fread(fd,1,'uint32');
 ens.pressure_std(k) =fread(fd,1,'uint32');
 nbyte=nbyte+10;
 end;

 if cfg.prog_ver>=8.24, % Spare byte added 8.24
 fseek(fd,1,'cof');
 nbyte=nbyte+1;
 end;

 if (cfg.prog_ver>=10.01 & cfg.prog_ver<=10.99) ...
 | cfg.prog_ver>=16.05, % Added more fields with century in clock 16.05
 cent=fread(fd,1,'uint8');
 ens.rtc(:,k)=fread(fd,7,'uint8');
 ens.rtc(1,k)=ens.rtc(1,k)+cent*100;
 nbyte=nbyte+8;
 end;

 elseif fix(cfg.prog_ver)==9,

 fseek(fd,2,'cof');
 ens.pressure(k) =fread(fd,1,'uint32');
 ens.pressure_std(k) =fread(fd,1,'uint32');
 nbyte=nbyte+10;

 if cfg.prog_ver>=9.10, % Spare byte added 8.24
 fseek(fd,1,'cof');
 nbyte=nbyte+1;
 end;

 end;

 elseif strcmp(cfg.name,'os-adcp'),

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-13

 fseek(fd,16,'cof'); % 30 bytes all set to zero, 14 read above
 nbyte=nbyte+16;

 if cfg.prog_ver>23,
 fseek(fd,2,'cof');
 nbyte=nbyte+2;
 end;
 end;

 case '0100', % Velocities
 vels=fread(fd,[4 cfg.n_cells],'int16')'*.001; % m/s
 ens.east_vel(:,k) =vels(:,1);
 ens.north_vel(:,k)=vels(:,2);
 ens.vert_vel(:,k) =vels(:,3);
 ens.error_vel(:,k)=vels(:,4);
 nbyte=2+4*cfg.n_cells*2;

 case '0200', % Correlations
 ens.corr(:,:,k) =fread(fd,[4 cfg.n_cells],'uint8')';
 nbyte=2+4*cfg.n_cells;

 case '0300', % Echo Intensities
 ens.intens(:,:,k) =fread(fd,[4 cfg.n_cells],'uint8')';
 nbyte=2+4*cfg.n_cells;

 case '0400', % Percent good
 ens.percent(:,:,k) =fread(fd,[4 cfg.n_cells],'uint8')';
 nbyte=2+4*cfg.n_cells;

 case '0500', % Status
 if strcmp(cfg.name,'os-adcp'),
 fseek(fd,00,'cof');
 nbyte=2+00;
 else
 % Note in one case with a 4.25 firmware SC-BB, it seems like
 % this block was actually two bytes short!
 ens.status(:,:,k) =fread(fd,[4 cfg.n_cells],'uint8')';
 nbyte=2+4*cfg.n_cells;
 end;

 case '0600', % Bottom track
 % In WINRIVER GPS data is tucked into here in odd ways, as long
 % as GPS is enabled.
 if SOURCE==2,
 fseek(fd,2,'cof');
 long1=fread(fd,1,'uint16');
 fseek(fd,6,'cof');
 cfac=180/2^31;
 ens.slatitude(k) =fread(fd,1,'int32')*cfac;
 if ens.slatitude(k)==0, ens.slatitude(k)=NaN; end;
%%fprintf('\n k %8.3f',ens.slatitude(k));
 else
 fseek(fd,14,'cof'); % Skip over a bunch of stuff
 end;
 ens.bt_range(:,k)=fread(fd,4,'uint16')*.01; %
 ens.bt_vel(:,k) =fread(fd,4,'int16');
 ens.bt_corr(:,k)=fread(fd,4,'uint8'); % felipe pimenta aug. 2006
 ens.bt_ampl(:,k)=fread(fd,4,'uint8'); % "
 ens.bt_perc_good(:,k)=fread(fd,4,'uint8'); % "
 if SOURCE==2,
 fseek(fd,2,'cof');
 ens.slongitude(k)=(long1+65536*fread(fd,1,'uint16'))*cfac;

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-14

%%fprintf('\n k %d %8.3f %f ',long1,ens.slongitude(k),(ens.slongitude(k)/cfac-long1)/65536);
 if ens.slongitude(k)>180, ens.slongitude(k)=ens.slongitude(k)-360; end;
 if ens.slongitude(k)==0, ens.slongitude(k)=NaN; end;
 fseek(fd,16,'cof');
 qual=fread(fd,1,'uint8');
 if qual==0,
%% fprintf('qual==%d,%f %f',qual,ens.slatitude(k),ens.slongitude(k));
 ens.slatitude(k)=NaN;ens.slongitude(k)=NaN;
 end;
 fseek(fd,71-45-21,'cof');
 else
 fseek(fd,71-45,'cof');
 end;
 nbyte=2+68;
 if cfg.prog_ver>=5.3, % Version 4.05 firmware seems to be missing these last 11 bytes.
 fseek(fd,78-71,'cof');
 ens.bt_range(:,k)=ens.bt_range(:,k)+fread(fd,4,'uint8')*655.36;
 nbyte=nbyte+11;

 if strcmp(cfg.name,'wh-adcp'),

 if cfg.prog_ver>=16.20, % RDI documentation claims these extra bytes were added in v 8.17
 fseek(fd,4,'cof'); % but they don't appear in my 8.33 data - conversation with
 nbyte=nbyte+4; % Egil suggests they were added in 16.20
 end;
 end;
 end;

% The raw files produced by VMDAS contain a binary navigation data
% block.

 case '2000', % Something from VMDAS.
 cfg.sourceprog='VMDAS';
 if SOURCE~=1, fprintf('\n***** Apparently a VMDAS file \n\n'); end;
 SOURCE=1;
 utim =fread(fd,4,'uint8');
 mtime =datenum(utim(3)+utim(4)*256,utim(2),utim(1));
 ens.smtime(k) =mtime+fread(fd,1,'uint32')/8640000;
 fseek(fd,4,'cof'); % PC clock offset from UTC
 cfac=180/2^31;
 ens.slatitude(k) =fread(fd,1,'int32')*cfac;
 ens.slongitude(k) =fread(fd,1,'int32')*cfac;
 ens.emtime(k) =mtime+fread(fd,1,'uint32')/8640000;
 ens.elatitude(k) =fread(fd,1,'int32')*cfac;
 ens.elongitude(k) =fread(fd,1,'int32')*cfac;
 fseek(fd,12,'cof');
 ens.flags(k) =fread(fd,1,'uint16');
 fseek(fd,6,'cof');
 utim =fread(fd,4,'uint8');
 mtime =datenum(utim(1)+utim(2)*256,utim(4),utim(3));
 ens.nmtime(k) =mtime+fread(fd,1,'uint32')/8640000;
 % in here we have 'ADCP clock' (not sure how this
 % differs from RTC (in header) and UTC (earlier in this block).
 fseek(fd,16,'cof');
 nbyte=2+76;

 case '2022', % New NMEA data block from WInRiverII

 cfg.sourceprog='WINRIVER2';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;
 SOURCE=2;

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-15

 specID=fread(fd,1,'uint16');
 msgsiz=fread(fd,1,'int16');
 deltaT=fread(fd,8,'uchar');
 nbyte=2+12;

 fseek(fd,msgsiz,'cof');
 nbyte=nbyte+msgsiz;

 %% fprintf(' %d ',specID);
 switch specID,
 case 100,
 case 101,
 case 102,
 case 103,
 end;

% The following blocks come from WINRIVER files, they aparently contain
% the raw NMEA data received from a serial port.
%
% Note that for WINRIVER files somewhat decoded data is also available
% tucked into the bottom track block.
%
% I've put these all into their own block because RDI's software apparently completely ignores the
% stated lengths of these blocks and they very often have to be changed. Rather than relying on the
% error coding at the end of the main block to do this (and to produce an error message) I will
% do it here, without an error message to emphasize that I am kludging the WINRIVER blocks only!

 case {'2100','2101','2102','2103','2104'}

 winrivprob=1;

 switch id,

 case '2100', % $xxDBT (Winriver addition) 38
 cfg.sourceprog='WINRIVER';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;
 SOURCE=2;
 str=fread(fd,38,'uchar')';
 nbyte=2+38;

 case '2101', % $xxGGA (Winriver addition) 94 in manual but 97 seems to work
 % Except for a winriver2 file which seems to use 77.
 cfg.sourceprog='WINRIVER';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;
 SOURCE=2;
 str=setstr(fread(fd,97,'uchar')');
 nbyte=2+97;
 l=strfind(str,'$GPGGA');
 if ~isempty(l),

ens.smtime(k)=(sscanf(str(l+7:l+8),'%d')+(sscanf(str(l+9:l+10),'%d')+sscanf(str(l+11:l+12),'%d')/60)/60)/24;
 end;
 % disp(['->' setstr(str(1:50)) '<-']);

 case '2102', % $xxVTG (Winriver addition) 45 (but sometimes 46 and 48)
 cfg.sourceprog='WINRIVER';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-16

 SOURCE=2;
 str=fread(fd,45,'uchar')';
 nbyte=2+45;
 % disp(setstr(str));

 case '2103', % $xxGSA (Winriver addition) 60
 cfg.sourceprog='WINRIVER';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;
 SOURCE=2;
 str=fread(fd,60,'uchar')';
 % disp(setstr(str));
 nbyte=2+60;

 case '2104', %xxHDT or HDG (Winriver addition) 38
 cfg.sourceprog='WINRIVER';
 if SOURCE~=2, fprintf('\n***** Apparently a WINRIVER file - Raw NMEA data handler not yet
implemented\n\n'); end;
 SOURCE=2;
 str=fread(fd,38,'uchar')';
 % disp(setstr(str));
 nbyte=2+38;
 end;

 case '0701', % Number of good pings
 fseek(fd,4*cfg.n_cells,'cof');
 nbyte=2+4*cfg.n_cells;

 case '0702', % Sum of squared velocities
 fseek(fd,4*cfg.n_cells,'cof');
 nbyte=2+4*cfg.n_cells;

 case '0703', % Sum of velocities
 fseek(fd,4*cfg.n_cells,'cof');
 nbyte=2+4*cfg.n_cells;

% These blocks were implemented for 5-beam systems

 case '0A00', % Beam 5 velocity (not implemented)
 fseek(fd,cfg.n_cells,'cof');
 nbyte=2+cfg.n_cells;

 case '0301', % Beam 5 Number of good pings (not implemented)
 fseek(fd,cfg.n_cells,'cof');
 nbyte=2+cfg.n_cells;

 case '0302', % Beam 5 Sum of squared velocities (not implemented)
 fseek(fd,cfg.n_cells,'cof');
 nbyte=2+cfg.n_cells;

 case '0303', % Beam 5 Sum of velocities (not implemented)
 fseek(fd,cfg.n_cells,'cof');
 nbyte=2+cfg.n_cells;

 case '020C', % Ambient sound profile (not implemented)
 fseek(fd,4,'cof');
 nbyte=2+4;

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-17

 case '3000', % Fixed attitude data format for OS-ADCPs (not implemented)
 fseek(fd,32,'cof');
 nbyte=2+32;

 otherwise,
 % This is pretty idiotic - for OS-ADCPs (phase 2) they suddenly decided to code
 % the number of bytes into the header ID word. And then they don't really
 % document what they did! So, this is cruft of a high order, and although
 % it works on the one example I have - caveat emptor....
 %
 % Anyway, there appear to be codes 0340-03FC to deal with. I am not going to
 % decode them but I am going to try to figure out how many bytes to
 % skip.
 if strcmp(id(1:2),'30'),
 % I want to count the number of 1s in the middle 4 bits of the
 % 2nd two bytes.
 nflds=sum(dec2base(bitand(hex2dec(id(3:4)),hex2dec('3C')),2)=='1');
 % I want to count the number of 1s in the highest 2 bits of byte 3
 dfac= sum(dec2base(bitand(hex2dec(id(3)),hex2dec('C')),2)=='1');
 fseek(fd,12*nflds*dfac,'cof');
 nbyte=2+12*nflds*dfac;

 else
 fprintf('Unrecognized ID code: %s\n',id);
 nbyte=2;
 end;
 %% ens=-1;
 %% return;

 end;

 % here I adjust the number of bytes so I am sure to begin
 % reading at the next valid offset. If everything is working right I shouldn't have
 % to do this but every so often firware changes result in some differences.

 %%fprintf('#bytes is %d, original offset is %d\n',nbyte,byte_offset);
 byte_offset=byte_offset+nbyte;

 if n<length(hdr.dat_offsets),
 if hdr.dat_offsets(n+1)~=byte_offset,
 if ~winrivprob, fprintf('%s: Adjust location by %d\n',id,hdr.dat_offsets(n+1)-byte_offset); end;
 fseek(fd,hdr.dat_offsets(n+1)-byte_offset,'cof');
 end;
 byte_offset=hdr.dat_offsets(n+1);
 else
 if hdr.nbyte-2~=byte_offset,
 if ~winrivprob, fprintf('%s: Adjust location by %d\n',id,hdr.nbyte-2-byte_offset); end;
 fseek(fd,hdr.nbyte-2-byte_offset,'cof');
 end;
 byte_offset=hdr.nbyte-2;
 end;
 end;

 % Now at the end of the record we have two reserved bytes, followed
 % by a two-byte checksum = 4 bytes to skip over.

 readbytes=ftell(fd)-startpos;
 offset=(hdr.nbyte+2)-byte_offset; % The 2 is for the checksum

 if offset ~=4 & FIXOFFSET==0,
 fprintf('\n***\n');

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-18

 if feof(fd),
 fprintf(' EOF reached unexpectedly - discarding this last ensemble\n');
 ens=-1;
 else
 fprintf('Adjust location by %d (readbytes=%d, hdr.nbyte=%d)\n',offset,readbytes,hdr.nbyte);
 fprintf(' NOTE - If this appears at the beginning of the read, it is\n');
 fprintf(' is a program problem, possibly fixed by a fudge\n');
 fprintf(' PLEASE REPORT TO rich@eos.ubc.ca WITH DETAILS!!\n\n');
 fprintf(' -If this appears at the end of the file it means\n');
 fprintf(' The file is corrupted and only a partial record has \n');
 fprintf(' has been read\n');
 end;
 fprintf('**\n');
 FIXOFFSET=offset-4;
 end;
 fseek(fd,4+FIXOFFSET,'cof');

 % An early version of WAVESMON and PARSE contained a bug which stuck an additional two
 % bytes in these files, but they really shouldn't be there
 %if cfg.prog_ver>=16.05,
 % fseek(fd,2,'cof');
 %end;

end;

% Blank out stuff bigger than error velocity
% big_err=abs(ens.error_vel)>.2;
big_err=0;

% Blank out invalid data
ens.east_vel(ens.east_vel==-32.768 | big_err)=NaN;
ens.north_vel(ens.north_vel==-32.768 | big_err)=NaN;
ens.vert_vel(ens.vert_vel==-32.768 | big_err)=NaN;
ens.error_vel(ens.error_vel==-32.768 | big_err)=NaN;

%--------------------------------------
function y=nmedian(x,window,dim);
% Copied from median but with handling of NaN different.

if nargin==2,
 dim = min(find(size(x)~=1));
 if isempty(dim), dim = 1; end
end

siz = [size(x) ones(1,dim-ndims(x))];
n = size(x,dim);

% Permute and reshape so that DIM becomes the row dimension of a 2-D array
perm = [dim:max(length(size(x)),dim) 1:dim-1];
x = reshape(permute(x,perm),n,prod(siz)/n);

% Sort along first dimension
x = sort(x,1);
[n1,n2]=size(x);

if n1==1,
 y=x;
else
 if n2==1,

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-19

 kk=sum(isfinite(x),1);
 if kk>0,
 x1=x(fix((kk-1)/2)+1);
 x2=x(fix(kk/2)+1);
 x(abs(x-(x1+x2)/2)>window)=NaN;
 end;
 x = sort(x,1);
 kk=sum(isfinite(x),1);
 x(isnan(x))=0;
 y=NaN;
 if kk>0,
 y=sum(x)/kk;
 end;
 else
 kk=sum(isfinite(x),1);
 ll=kk<n1-2;
 kk(ll)=0;x(:,ll)=NaN;
 x1=x(fix((kk-1)/2)+1+[0:n2-1]*n1);
 x2=x(fix(kk/2)+1+[0:n2-1]*n1);

 x(abs(x-ones(n1,1)*(x1+x2)/2)>window)=NaN;
 x = sort(x,1);
 kk=sum(isfinite(x),1);
 x(isnan(x))=0;
 y=NaN+ones(1,n2);
 if any(kk),
 y(kk>0)=sum(x(:,kk>0))./kk(kk>0);
 end;
 end;
end;

% Permute and reshape back
siz(dim) = 1;
y = ipermute(reshape(y,siz(perm)),perm);

%--------------------------------------
function y=nmean(x,dim);
% R_NMEAN Computes the mean of matrix ignoring NaN
% values
% R_NMEAN(X,DIM) takes the mean along the dimension DIM of X.
%

kk=isfinite(x);
x(~kk)=0;

if nargin==1,
 % Determine which dimension SUM will use
 dim = min(find(size(x)~=1));
 if isempty(dim), dim = 1; end
end;

if dim>length(size(x)),
 y=x; % For matlab 5.0 only!!! Later versions have a fixed 'sum'
else
 ndat=sum(kk,dim);
 indat=ndat==0;
 ndat(indat)=1; % If there are no good data then it doesn't matter what
 % we average by - and this avoid div-by-zero warnings.

 y = sum(x,dim)./ndat;
 y(indat)=NaN;
end;

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page A-20

function [U,V] = mag_var(theta,u,v)
% magnetic variation correction
%
% input:
% theta (degree)
% u,v: horizontal velocity profile
%
%
% output:
% U,V
%
theta_rad = deg2rad(theta);

M = [cos(theta_rad) sin(theta_rad);-sin(theta_rad) cos(theta_rad)];

tmp = M*[u,v]';
U = tmp(1);
V = tmp(2);

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page B-1

Appendix B Output Accuracy

The output accuracy for the OOI L1 Velocity Profile core data product calculated by this
algorithm is equivalent to the accuracy of the instrument. The manufacturer, TRDI,
provides accuracy as stated below.

For fixed assets.

Instrument class Output Accuracy
ADCPT: TRDI Workhorse Quartermaster
(150kHz ADCP)

≤ ±500 mm/s ± 5 mm/s
> ±500 mm/s 1%

ADCPS: TRDI Workhorse Longranger (75 kHz
ADCP)

≤ ±500 mm/s ± 5 mm/s
> ±500 mm/s 1%

Relevant requirements from the OOI requirements database (DOORS,
L2_Science_Requirements_ReferenceOnly_Baseline_Version_2.22 exported from
DOORS SL CCB 2011-11-15) are listed below.

L2-SR-RQ-3137 Velocity profile measurements shall have an accuracy of ±(0.01 m/s +
1% of the measured value).

L2-SR-RQ-3864 Velocity profile measurements shall have an absolute direction
accuracy of +/- 2 degrees.

For mobile assets.

Instrument class Output Accuracy
ADCPA: TRDI Explorer PA DVL ≤ ±666.67 mm/s ± 2 mm/s

> ±666.67 mm/s ± 0.3%

Relevant requirement from the OOI requirements is listed below.

L4-CG-IP-RQ-468 Velocity Profile instruments on mobile assets shall have a speed accuracy of
1% of the measured value +/- 1 cm/s.

No accuracy information is known for the OOI L1 Echo Intensity core data product.

Data Product Specification for Velocity Profile and Echo IntensityData Product
Specification for Velocity Profile and Echo Intensity

Ver 2-00 1341-00750 Appendix Page C-1

Appendix C Sensor Calibration Effects
None.

	1 Abstract
	2 Introduction
	2.1 Author Contact Information
	2.2 Metadata Information
	2.2.1 Data Product Name
	2.2.2 Data Product Abstract (for Metadata)
	2.2.3 Computation Name
	2.2.4 Computation Abstract (for Metadata)
	2.2.5 Instrument-Specific Metadata
	2.2.6 Data Product Synonyms
	2.2.7 Similar Data Products

	2.3 Instruments
	2.4 Literature and Reference Documents
	2.5 Terminology
	2.5.1 Definitions
	2.5.2 Acronyms, Abbreviations and Notations
	2.5.3 Variables and Symbols

	3 Theory
	3.1 Description
	3.2 Mathematical Theory
	3.3 Known Theoretical Limitations
	3.4 Revision History

	4 Implementation
	4.1 Overview
	4.2 Inputs
	4.3 Processing Flow
	4.4 Outputs
	4.5 Computational and Numerical Considerations
	4.5.1 Numerical Programming Considerations
	4.5.2 Computational Requirements

	4.6 Code Verification and Test Data Set

	5 Three-Beam Solution
	5.1 Overview
	5.2 Implementation

	Appendix A Example Code
	Appendix B Output Accuracy
	Appendix C Sensor Calibration Effects

