Pioneer Array
Relocation Status

Al Plueddemann and Derek Buffitt
Fall AGU 12 Dec 2022
Overview

• The Pioneer Array was conceived within OOI as a re-locatable coastal array suitable for moderate wave and current regimes on the continental shelf and upper slope.

• The Array has been on New England Shelf since 2016, final recovery Nov 2022.

• Existing infrastructure will be utilized to create a new Array

• The new location is the shelf and slope offshore of North Carolina, starting in 2024
Background

- NSF Announcement of intent to relocate (or retain)
 - Ocean Sciences Town Hall, Feb 2020
- Extensive community input from two Innovations Labs
 - 15-19 March and 21-15 June 2021
- Decision to relocate to southern MAB
 - Announced in Apr 2021
- Relocation process
 - Initiated Jul 2021
Relocation Process

• Approach
 • Guided by Innovations Lab science questions
 • Array design based on Innovations Lab consensus
 • Assessment and refinement by OOI Team

• Goals
 • Address science questions
 • Implement the consensus array design
 • Optimize use of existing inventory
 • Ensure feasible implementation
 • Operate within existing budget
Relocation Timeline

- Three main phases: Planning, Engineering, Implementation
- NE Shelf Pioneer ends Fall 2022; MAB Pioneer starts Spring 2024

Phase 1: Planning
- 10 months
 - Consolidation of community input
 - Environmental Assessment
 - Engineering Assessment
 - Regulatory Study

Phase 2: Engineering
- 8 months
 - Mooring design
 - Site design
 - Instrument Requirements

Phase 3: Implementation
- 16 months
 - Regulatory Approvals
 - Procurement
 - Mooring Builds
 - System Tests
 - First Deployment

- MAB Pioneer begins Spring 2024
- NES Pioneer ends Fall 2022
Planning Phase Tasks

- Establish Focus Group
- Consolidate Innovation Labs input
 - Science themes, array design, instrumentation
- Site Characterization
- Waterspace management
- Regulatory study
- Mooring modeling
- Regional ocean modeling
- Instrumentation assessment
- Array design
Engineering Phase Tasks

• Complete Site Characterization
• Waterspace management
• Stakeholder engagement
• Regulatory/Permitting
• Final array design
• At-sea tests and site survey
• Final mooring design
• Instrument Procurement
• Configuration management
• CI assessment and planning
MAB Science Themes

• **Approach**
 • Grouped into broad themes based on Innovations Lab input/ranking

• **High level themes**
 • Dynamics of shelf/slope exchange
 • Wind forcing, frontal instability, Gulf Stream influence
 • BGC cycling and transport
 • Carbon, nutrients, particulates
 • Ecosystem response
 • Extreme events
 • Hurricanes, freshwater outflows

Dana Savidge (Skidaway) and the PEACH Project
MAB Observing Region

- Environmental constraints
 - Away from: Gulf Stream, shallow water, strong fronts, strong currents
- Limits of spatially coherent array
 - Moored array ~ 60 km x 60 km
- Decision to focus on:
 - Shelf-slope region
 - S of Chesapeake, N of Hatteras
- Desire to extend offshore & north:
 - Glider domain

Dana Savidge (Skidaway) and the PEACH Project
Moored Array

- **Components**
 - 3 Surface Moorings
 - 5 Profiler Moorings
 - 2 Shallow Water

- **Challenges**
 - Regulatory
 - Shallow water
 - Instruments
 - Logistics
 - Budget
MAB AUV Plan

- **Operations**
 - Two REMUS-600 AUVs
 - “Campaign mode”
 - 4-6 missions/yr
- **Two mission boxes**
 - Cross-shelf box
 - Along-shelf box
- **Objectives**
 - Synoptic transects of moored array
 - Resolve shelfbreak front
MAB Glider Plan

• Operations
 • Occupy four track lines
 • ~90 day endurance

• Four main track lines
 • Moored array (yellow)
 • Cross-shelf (blue)
 • 2x Slope Sea (white; N-S line and X pattern)

• Supplemental line
 • Norfolk Canyon (dashed; 2x/yr)
Instrument Assessment

• Baseline: Current OOI core sensors
 • Oceanobservatories.org

• Innovations Lab Input
 • >40 instruments or measurement concepts suggested
 • Short list of 12 based on cross-group consensus

• Refined to “Tier 1” implementation list based on:
 • Science themes, technical readiness, operational feasibility, budget impacts

• Next steps
 • Requirements, specifications, RFIs, evaluation, procurement
Instrument Additions

- Tier 1 instruments and new procurements
 - Temperature and salinity, near surface
 - Velocity profile, near-surface
 - Turbidity*, water column and near bottom
 - Suspended particulates, near surface and near bottom
 - Phytoplankton imaging, near surface
 - Incident radiation, surface buoys
 - Nitrate, glider

* Preference for using existing FLORT instrument with manufacturer calibration for turbidity
Current Status and Look-Ahead

• Planning Phase - complete
• Engineering Phase – in progress
• Implementation Phase – early 2023
• Initial deployment – Spring 2024
Questions?