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1 Abstract 
The Flux Direct Covariance High Power (FDCHP) system is an instrument package that collects 
vertical and horizontal wind components, air temperature and platform motion.  This data is used 
to directly compute air-sea fluxes of momentum and buoyancy.  The air-sea flux of momentum is 
the vertical transfer of horizontal momentum from the air to the ocean and is often referred to as 
the wind stress.   The air-sea buoyancy flux is the vertical transfer of buoyancy associated with 
moist air and represents a mixture of sensible and latent heat exchange.  Computation of the 
fluxes is accomplished using the motion-corrected direct covariance (MCDC) approach.  This 
approach requires the system to measure the motion of the platform that can be used to compute 
the significant wave height and its direction. The system also provides the associated means and 
additional statistical measures of atmospheric turbulences and platform motion.  
 
This document describes the computation used to calculate the OOI Level 1 and Level 2 FDCHP 
products from data collected by the system. The L1 products provide the motion corrected time 
series of 3-axis winds and sonic temperature denoted by WINDTUR_L1 and TMPATUR_L1 in 
this document.  The L2 products provide the air-sea fluxes of momentum and buoyancy 
computed from the L1 products.  The along-wind and cross-wind components of the momentum 
flux vector are denoted by FLUXMOM-U_L2 and FLUXMOM-V_L2, respectively; while the 
buoyancy flux is denoted by FLUXHOT_L2.  This document is to be used by OOI programmers to 
construct appropriate processes to read the L1 and L2 products. 

2 Introduction 

2.1 Author Contact Information 
Please contact Jim Edson (james.edson@uconn.edu) or the Data Product Specification lead 
(DPS@lists.oceanobservatories.org) for more information concerning the computation and other 
items in this document. 

2.2 Metadata Information 

2.2.1 Data Product Names 
 
The OOI L0 Core Data Product Names and Descriptive Names for the products are: 
 
Name  Descriptive Name   
MOTFLUX_L0  Platform Motion in buoy reference frame [decimal counts] 
TMPATUR_L0  Speed of sound [counts] 
WINDTUR_L0  Wind speed components in buoy reference frame [counts]  
 
The coefficients to convert from counts to physical units are listed in Table 1. 
  
The OOI L1 Core Data Product Names and Descriptive Names for the products are: 
 
Name  Descriptive Name 
WINDTUR-VLN_L1 Motion-corrected northward wind speed component [m/s]  
WINDTUR-VLW_L1 Motion-corrected westward wind speed component [m/s]  
WINDTUR-VLU_L1 Motion-corrected upward wind speed component [m/s]  
TMPATUR_L1  Sonic temperature [oC]  
 
The OOI L2 Core Data Product Names and Descriptive Names for the products are: 
 
Name  Descriptive Name   
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FLUXMOM-U_L2 Along-wind component of momentum flux [m2/s2] 
FLUXMOM-V_L2 Cross-wind component of momentum flux [m2/s2] 
FLUXHOT_L2  Buoyancy Flux  [m/s K] 
 
Data Product Abstract (for Metadata) 
 
This document describes how to compute the L1 and L2  data products from the raw data upon 
instrument recovery. 
 
A number of the OOI surface buoys are equipped with the Flux Direct Covariance High Power 
(FDCHP).   The FDCHP collects and stores the raw motion (MOTFLUX_L0), sonic anemometer 
(WINDTUR_L0), and sonic temperature (TMPATUR_L0) data.   The document describes how 
the raw data is processed to compute the Level 1 motion-corrected wind speeds (WINDTUR-L1) 
and sonic temperature (TMPATUR_L1) data.  The Level 1 data is then used to compute the 
Level 2 momentum flux components (FLUXMOM-U_L2 and FLUXMOM-V_L2) required to 
produce the surface stress vector, and the buoyancy flux (FLUXHOT_L2).   
 
The momentum flux is the vertical transfer of horizontal momentum from the air to the ocean and 
is called the wind stress.  It is the transfer of energy from the wind physically pushing against the 
water.  The wind stress is a vector quantity that can be defined as  
 

 
 
where  is the stress vector,  is the density of air, and  and  are the along-wind and 
cross-wind components, respectively.   The vector wind in this coordinate system is given by 

, where  is the mean wind speed. 
 
FLUXMOM-U:  The kinematic form (Stull, 1988) of the along-wind component of momentum 
flux, , is computed using the motion-corrected direct covariance (MCDC) method where  
represents fluctuations in the along-wind (or streamwise) wind component and  represents 
fluctuations the vertical velocity component.      These fluctuations are computed after removal of 
the platform motion from the measured wind vector as described in section 3.  The along-wind 
component generally carries most of the momentum flux, i.e., it is responsible for most of the 
surface stress. 
       
FLUXMOM-V:  The kinematic form of the cross-wind component of momentum flux, , is 
computed using the MCDC method where  represents fluctuations in the cross-wind (or lateral) 
wind component.  The cross-wind component is generally smaller than the along-wind 
component, signifying that the wind and stress vectors are closely aligned.   However, this 
component can become as large as or even larger than the along-wind component near the 
ocean surface in the presence of waves.   It can also be large in light-wind conditions where the 
wind and stress vectors are poorly defined.   
 
FLUXHOT:  The kinematic form of the buoyancy Flux, , is computed using the direct 
covariance method where  represents fluctuations in the virtual temperature , 
where  is air temperature and  is the specific humidity.   The virtual temperature is defined as 
and incorporates the effect of both temperature and moisture on the buoyancy of an air parcel 
(i.e., its density compared to the density of the surrounding air).   For example, a moist parcel of 
air is less dense than a dry parcel of air at the same temperature.  Such a parcel would have 
positive buoyancy and would want to rise thereby transferring moisture (and latent heat) upwards.   
The DCFS approximate the virtual temperature using the sonic temperature given by 

.   The small difference between the buoyancy flux computed using sonic 



Data Product Specification for FDCHP Data Products 

 
Ver 1-00 1341-00280 Page 3 

temperature can be removed by users with estimates of the moisture (or latent heat) flux from the 
bulk fluxes. 
 
Ancillary Data:   The Level 0 and Level 1 data are also used to provide ancillary data that includes 
the mean, standard deviation, minimum value, and maximum value of the variables from each 
sensor.   These are intended to provide diagnostic data to monitor system performance.   

2.2.2 Computation Name 
The Motion-Corrected Direct Covariance Method (MCDC) 

2.2.3 Computation Abstract (for Metadata) 
 
This DPS describes the motion-corrected direct covariance (MCDC) approach used by the 
FDCHP to produce the L2 data products.  The FDCHP system provides a means to directly 
compute the fluxes; it makes rapid (e.g. 10 Hz) observations of turbulent three-dimensional wind 
velocity ( ) and sonic temperature ( ) from a 3-axis sonic anemometer, where 
sonic temperature is derived from the measured speed of sound.   The velocity data is 
contaminated by platform motion, which is removed prior to calculation of the direct covariance 
fluxes.   This is accomplished using a “strapped-down” system with 3-axis linear accelerometers, 
3-axis angular rates sensors (gyros), and a pitch, roll and yaw magnetometer.  These sensors are 
used to determine the rotation matrix and the 3-axis platform velocities as described in section 
3.2.   The fluxes are computed from the products of motion corrected velocities ,  and 

 to provide estimates, respectively, of the two horizontal components of wind stress and the 
buoyancy flux.   

2.2.4 Instrument-Specific Metadata 
 
The height of each sensor above the nominal sea surface and the recording period (length of time 
over which an observation is taken) must be recorded and kept as part of the metadata.  The 
latitude of the FDCHP system is required and kept as part of the metadata. 

The sign convention for the instruments in the buoy reference frame is based on a right-handed 
(x, y, z) coordinate system with x positive towards the buoy vane, y positive to port of the buoy 
vane (i.e., to the left looking in the positive-x direction), z positive upward, roll positive for positive-
y rolled up, pitch positive for positive-x pitched down, and yaw (heading) positive for positive-z 
yawed counter-clockwise. Note that the right-handed definition of yaw is opposite the typical left-
handed definition used for a compass.  Also note that the x-component of the relative wind speed 
is generally positive in this coordinate system as it usually blows towards the vane. 

The FDCHP will provide a time stamp using its internal clock.   The metadata must include the 
time the internal clock was set such that drift can be easily computed in post-processing.  The 
FDCHP will also provide a version number of the software and a status integer. 

Quality Control Variables/User Auxiliary Data 
During the computations associated with the MCDC, auxiliary data products are computed, saved 
and telemetered to provide quality control of the FDCHP data (for more information, see the 
FDCHP Interface Document).  Specifically these are: 
 
Sonic Anemometer/Thermometer (Gill Windmaster Pro Model 1561-PK-020)  
WindU: Average wind speed component along instrument x-axis [m/s]  
WindV: Average wind speed component along instrument y-axis [m/s]  
WindW: Average wind speed component along instrument z-axis [m/s]  
Tsonic: Average sonic temperature [C]  
StdU: Standard deviation of WindU [m/s]  
StdV: Standard deviation of WindV [m/s]  
StdW: Standard deviation of WindW [m/s]  
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StdTs: Standard deviation of Tsonic [C]  
MaxU: Maximum of WindU [m/s]  
MaxV: Maximum of WindV [m/s]  
MaxW: Maximum of WindW [m/s]  
MaxTs: Maximum of Tsonic [C]  
MinU: Minimum of WindU [m/s]  
MinV: Minimum of WindV [m/s]  
MinW: Minimum WindW [m/s]  
MinTs: Minimum of Tsonic [C]  
 
Linear Accelerometers (Microstrain Model 3DM-GX3-25) 
AX: Average observed acceleration along the instrument x axis [m/s2]  
AY: Average observed acceleration along the instrument y axis  [m/s2]  
AZ: Average observed acceleration along the instrument z axis [m/s2]  
AXstd: Standard deviation of AX [m/s2]  
AYstd: Standard deviation of AY [m/s2]  
AZstd: Standard deviation of AZ [m/s2]  
AXmax: Maximum AX [m/s2]  
AYmax: Maximum AY [m/s2]  
AZmax: Maximum AZ [m/s2]  
AXmin: Minimum AX [m/s2]  
AYmin: Minimum AY [m/s2]  
AZmin: Minimum AZ [m/s2] 
 
Angular Rate Sensors (Microstrain Model 3DM-GX3-25) 
RX: Average observed angular rate about the instrument x-axis [radian/sec]  
RY: Average observed angular rate about the instrument y-axis [radian/sec]  
RZ: Average observed angular rate about the instrument z-axis [radian/sec]  
RXstd: Standard deviation of RateX [radian/sec]  
RYstd: Standard deviation of RateY [radian/sec]  
RZstd: Standard deviation of RateZ [radian/sec]  
RXmax: Maximum RateX [radian/sec]  
RYmax: Maximum RateY [radian/sec]  
RZmax : Maximum RateZ [radian/sec]   
RXmin : Minimum RateX [radian/sec]  
RYmin: Minimum RateY [radian/sec]  
RZmin: Minimum RateZ [radian/sec]  
 
Magnetometer (Microstrain Model 3DM-GX3-25) 
Heading: Average Heading [radians]  
Pitch: Average Pitch [radians]  
Roll: Average Roll [radians]  
stdH: Standard deviation of Heading [radians]  
stdP: Standard deviation of Pitch [radians]  
stdR: Standard deviation of Roll [radians]  
maxH: Maximum Heading [radians]  
maxP: Maximum Pitch [radians]  
maxR: Maximum Roll [radians]  
minH: Minimum Heading [radians]  
minP: Minimum Pitch [radians]  
minR: Minimum Roll [radians]  
 
Additional Motion-Corrected Data  
Ucorr:   Motion-corrected Northerly wind speed component [m/s]  
Vcorr:  Motion-corrected Westerly wind speed component [m/s]  
Wcorr:  Motion-corrected vertical wind speed component [m/s]  
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StdUcorr:  Standard deviation of along-wind component  [m/s]  
StdVcorr:  Standard deviation of cross-wind component [m/s]  
StdWcorr:  Standard deviation of vertical component [m/s]  
WindSpeed: Motion-corrected wind speed relative to ground [m/s]  
UWcorr:  Along-wind momentum flux (corresponds to FLUXMOM-U_L2) 
VWcorr:  Cross-wind momentum flux (corresponds to FLUXMOM-V_L2) 
 
WTcorr:  Sonic temperature flux (corresponds to FLUXHOT_L2) 
SigH:  Significant wave height 
SigCp:  Significant wave period 

2.2.5 Data Product Synonyms 
- The momentum flux is also known as wind stress. 
- The direct covariance method is also known as the eddy correlation method.  
- The Flux Direct Covariance High Power (FDCHP) system was originally known as the 

Direct Covariance Flux System (DCFS) as described by Edson et al. (1998). 

2.2.6 Similar Data Products  
 
The L2 BULKFLUX core data products provide estimates of the latent heat, sensible heat, and 
momentum fluxes suing the bulk formulae method.   The latent and sensible heat fluxes can be 
combined to provide estimates of the buoyancy flux. 

2.3 Instruments 
 
For detailed information on the instruments from which the L2 FDCHP data product inputs are 
obtained, see the FCDHP Processing Flow document (1342-00280) and FDCHP Interface 
Document.   Briefly, the system measures the horizontal and vertical wind components in the 
buoy reference frame using a 3-axis Gill Windmaster Pro (Model 1561-PK-020) sonic 
anemometer.   The sonic anemometer also provides the speed of sound that is readily converted 
into sonic temperature, which closely approximates the virtual air temperature.   The platform 
motion is characterized using a Microstrain (Model 3DM-GS5-25) Inertial Measurement Unit 
(IMU).   This device integrates 3-axis linear accelerometers, 3-axis angular rate sensors (solid 
state gyros), and a 3-axis magnetometer.   The data is data from the sonic anemometer and IMU 
are merged, time-stamped and stored by a AA3355 1 Ghz ARM Cortex-A8 processor.   The 
processor collects data for 20 minutes out of the hour and processes it during the 40 minute 
interval to generate the ancillary data telemetered to monitor system performance. 
 

2.4 Literature and Reference Documents 
 
Anctil, F., M. A. Donelan, W. M. Drennan, and H. C. Graber, 1994: Eddy-correlation 

measurements of air–sea fluxes from a discus buoy.  J. Atmos. Oceanic Technol., 11, 
1144 –1150. 

Axford, D. N., 1968: On the accuracy of wind measurements using an inertial platform in an 
aircraft and an example of a measurement  of  the  vertical  mesostructure  of  the  
atmosphere.  J. Appl. Meteor., 7, 645–666. 

Dugan, J. P., S. L. Panichas, and R. L. DiMarco, 1991: Decontamination of wind measurements 
from buoys subject to motions in a seaway. J. Atmos. Oceanic Technol., 8, 85–95. 

Edson, J.B., A. A. Hinton, K. E. Prada, J.E. Hare, and C.W. Fairall, 1998: Direct covariance flux 
estimates from mobile platforms at sea,  J. Atmos. Oceanic Tech., 15, 547-562  

Edson, J. B., and C.W. Fairall, 1998: Similarity relationships in the marine atmospheric surface 
layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 2311-2328. 
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Fairall, C.W., A. B. White, J. B. Edson, and J. E. Hare, 1997: Integrated shipboard measurements 
of the marine boundary layer. J. Atmos. Oceanic Technol., 14, 368–379. 

Fujitani, T., 1981: Direct measurement of turbulent fluxes over the sea during AMTEX. Pap. 
Meteor. Geophys., 32, 119 –134. 

Fujitani, T., 1985: Method of turbulent flux measurement on a ship by using a stable platform 
system. Pap. Meteor. Geophys., 36, 157–170.  

Goldstein, H., 1965: Classical Mechanics. Addison-Wesley, 398 pp.  
Hristov, T. S., S. D. Miller, and C. A. Friehe, 2003: Dynamical coupling of wind and ocean waves 

through wave-induced air flow, Nature, 422, 55-58. 
Miller, S., C. Friehe, T. Hristov, and J. Edson, 2008: Platform motion effects on measurements of 

turbulence and air-sea exchange over the open ocean, J. Atmos. Oceanic Tech., 25, 
1683-1694. 

Oost, W. A., C. W. Fairall, J. B. Edson, S. D. Smith, R. J. Anderson, J. A. B. Wills, K. B. Katsaros, 
and J. DeCosmo, 1994: Flow distortion calculations and their application in HEXMAX. J. 
Atmos. Oceanic Technol., 11, 366–386. 

Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 
666 pp. 

Ware, J., 2014, Interface Document for the Flux Direct Covariance High Power System.  (see 
DPS Artifacts >> DCHPFLX >> FDCHP_Interface_Document-{revNN}.pdf) 

2.5 Terminology 

2.5.1 Definitions 
None. 

2.5.2 Acronyms, Abbreviations and Notations 
General OOI acronyms, abbreviations and notations are contained in the Level 2 Reference 
Module in the OOI requirements database (DOORS).  
 

2.5.3 Variables and Symbols 
 
Temperatures in degrees Kelvin are denoted by K and in Celsius by C, where T(K) = T(C) + 
273.15 K.  
 

3 Theory 

3.1 Description 
 The time-averaged flux determined using the direct covariance (or eddy correlation) 
technique is regarded as the most direct estimate of the ensemble average flux. In the field, a 
sonic anemometer is commonly used to provide the three velocity measurements required to 
compute the vector stress 

''ˆ''ˆ wviwui
a

+=
ρ
τ
!

      (1) 

where aρ  is the density of air; the overbar denote a time average; and 'u , 'v and 'w are the 
longitudinal, lateral, and vertical velocity fluctuations about their means, respectively.  In 

(1), ''wu−  represents the longitudinal (along-wind) component of the stress, and ''wv−  is the 
lateral component. 
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 The vertical velocity can also be correlated with scalar quantities to compute their vertical 
flux.  For example, investigations of air-sea investigation often need estimates of the buoyancy 
flux to account for atmospheric stability, 

'''' svB TwTwQ ≈=       (2) 

where 'vT  denotes fluctuations in the virtual temperature.  This temperature is closely 

approximately by the sonic temperature sT provided by the speed of sound measurements from a 
sonic anemometer.  The buoyancy flux is used to quantify the buoyant production or consumption 
of turbulent kinetic energy (TKE), and is used to define the convective velocity scale (Stull 1988).   
This flux can also be  combined with estimates of the surface stress to compute atmospheric 
stability parameters used in Monin-Obukhov similarity theory (e.g., Edson and Fairall, 1998). 
 The obvious problem that arises when estimating these fluxes from a moving platform is that 
part of the fluctuating velocity is due to platform motion. This motion contamination must therefore 
be removed before we can compute the fluxes. The contamination arises from three sources:  1) 
instantaneous  tilt  of  the  anemometer due to the pitch, roll, and heading variations of the 
platform; 2) angular velocities at the anemometer due to rotation of the platform about its local 
coordinate system axes; and 3) translational velocities of the platform with respect to a fixed 
frame of reference (Dugan et al. 1991; Anctil et al. 1994; Edson et al. 1998; Miller et al. 2008). 

3.2 Mathematical Theory 
  
 A variety of approaches have been used to correct wind sensors for platform motion. True 
inertial navigation systems (Axford 1968) are standard for research aircraft. These systems are 
expensive and subject to the so-called Schuler oscillation, so simpler techniques have been 
sought for ships where the platform mean vertical velocity is unambiguously zero. The basic 
approach that we are using follows that of Fujitani (1981), where the true wind vector (i.e, 
uncontaminated by motion) can be written as 
 

CMobstrue VMTVTV
!!!!!

+×Ω+=      (3) 

where trueV
!

is the desired wind velocity vector in the reference coordinate system, obsV
!

is the 

measured wind velocity vector in the platform frame of reference, T is the coordinate 
transformation matrix for a rotation of the platform frame coordinate system to the reference 
coordinates, Ω

!
is the angular velocity vector of the platform coordinate system, M

!
 is the 

position vector of the wind sensor with respect to the center of gravity, and CMV
!

is the 
translational velocity vector at the center of motion/mass of the platform with respect to a fixed 
coordinate system. 

The motion measurement system is often separated from the center of motion of the platform.   
As a result, an additional correction term is required to account for the angular velocities that are 
sensed at that location as translational velocities by the accelerometers (Fujitani 1985). This term 
is incorporated in (3) as 
 

motobstrue VSMTVTV
!!!!!!

+−×Ω+= )(     (4) 
 
where S

!
 is the vector distance from the motion system to the center of motion of the platform 

and motV
!

now includes the additional translational velocities. Fortunately, SM
!!

− is just the 
position vector of the wind sensor with respect to the motion package. Therefore, one does not 
need to know the exact location of the center of motion, which is often difficult to identify, just 
the distance between the motion sensors and the sampling volume of the sonic anemometer. 
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3.2.1 Angles and angular rates 
 
 To use (4), we need three angular variables describing the platform’s orientation in the fixed 
frame and the angular velocity vector describing the time rate of change of its orientation. 
Several different angular coordinate systems are available (Goldstein 1965), but roll φ, pitch θ, 
and yaw ψ are most often used because they are the variables output from doubly gimbaled 
gyro-stabilized systems commonly used on research vessels (e.g., the gyro-compass often 
located on the bridge). Such gyro-stabilized systems provide the user with pitch, roll, and yaw 
angles that describe the ship’s orientation in the fixed frame. These angles can be used directly 
in the total rotational coordinate transformation matrix that we define as 
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   (5) 

 
where the sign convention where the sign convention here is based on a righthanded (x, y, z) 
coordinate system with x positive forward (to bow), y positive to port, z positive upward, ψ 
positive for the ship’s bow yawed counter-clockwise from north, φ positive for the port side rolled 
up, and θ positive for the bow pitched down. Note that the right-handed definition of ψ  is 
opposite the typical left-handed definition used for a compass.   However, the incorporation of a 
compass in (5) simply requires multiplication of the compass heading by -1. 
 Equation (5) represents the coordinate system transform for a combination of the three 
separate rotations of the platform coordinate frame about the three axes of our frame of 
reference (i.e., the earth). Note that this total coordinate transformation matrix is dependent on 
the order of the three separate rotations. However, for small roll and pitch angles, such as those 
encountered on a large research vessel or discus buoy in the ocean environment (perhaps 
±15°), the error due to the order of rotation is negligible.  Additionally, the errors associated with 
the order of rotation are minimized by the 3, 2, 1 rotation used in (5).  

3.2.2 The FDCHP Strapped-Down System  
 
 In contrast to a gyro-stabilized system, the FDCHP uses a “strapped-down” approach where 
the motion sensors are firmly attached to the buoy frame.   The angular rate sensors used in 
this system directly measures the rate of angular rotation about the three axes in the buoy 
frame. In such systems, the angular rate vector is given by 
 

⎟
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⎟

⎠
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⎜
⎜
⎜

⎝

⎛
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ψ

θ
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!

!
!

       (6) 

 
 
where the subscript obs denotes measurements made in the buoy frame of reference. We 
remind the reader that the yaw rate is defined positive for a left-handed rotation. This vector 
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can be related to the fixed frame angular rate through obsTΩ=Ω
!!

.  This relationship allows one 
to rewrite (4) using our direct measurements of angular rate in the buoy frame as 

motobsobstrue VRVTV
!!!!!

+×Ω+= )(      (7) 
 
where R

!
 is the position vector of the wind sensor with respect to the motion package. 

 The difficulty then is to approximate the Euler angles ( φ, θ, ψ) from the strapped-down 
angular rate sensors. The general approach is to use obsTΩ=Ω

!!
with (5) to obtain an 

expression for the time derivative of these angles in terms of the measured angular rates 
given by 
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⎛
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−
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=
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⎦

⎤

⎢
⎢
⎢

⎣

⎡

)cos(/)]sin()cos([
)sin()cos(

)tan()]sin()cos([

θφθφψ

φψφθ

θφθφψφ

ψ

θ

φ

obsobs

obsobs

obsobsobs

!!
!!
!!!

!

!
!

   (8) 

 
The angles can then be approximated by integrating (8) and updating this matrix with 
successive approximation of φ , θ and ψ  (Fairall et al. 1997).   

3.2.3  Complementary filtering 
 
 In practice, problems often arise with this approach due to the drift found in angular rate 
sensors. Therefore, in the approach used by the FDCHP, the angles are found by high-pass 
filtering the angles that are computed by integration of (8) and then adding these results to low-
pass filtered reference angles using an approach known as complimentary filtering.   These 
complimentary-filtered angles provide an estimate of φ and θ, which are used in the update 
matrix to provide better approximation of the Euler angles through subsequent iteration and 
integration. 
 The reference angles used in the FDCHP approach are found from the measured 
accelerations in the buoy frame of reference.   In this frame of reference, the measured 
accelerometer output is a combination of the gravitational component due to the pitching and 
rolling of the buoy (i.e., due to tilting of the system) plus the accelerations arising from the motion 
of the buoy along the accelerometer axes 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

+
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⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)cos()cos(
)cos()sin(

)sin(

θφ

θφ

θ

g
g

g

z
y
x

z
y
x

obs

obs

obs

!!

!!
!!

!!

!!
!!

    (9) 

where the double dots denote second derivatives of the position vector zkyjxiX ˆˆˆ ++=
!

, and g 
is the gravitational acceleration.  The second term on the right-hand side of (9) represents the tilt-
induced acceleration. These tilt-induced accelerations will eventually have to be removed before 
we integrate our accelerometers to compute the buoy velocities as described in section 3.  
However, we can use these measured accelerations and angular rates to approximate the 
desired angles using complementary filtering. 
 The original DCFS system described in Edson et al. (1998) used true complementary filter 
with simply first-order Butterworth filters.   This approach is easily illustrated using Laplace 
transform notation where, e.g., the roll is approximated by  

obs
obs

s
s

g
y

s
φ

τ
τ

τ
φ

11
1

+
+

+
≈

!!
     (10) 
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where s represents the differentiation operator such that obsobs sφφ =! , and τ is a time constant, 

and we have assumed that the tilts are small, i.e., φθφ gg ≈)cos()sin( . The first term on the 
right-hand side is the low-frequency tilt reference from the accelerometers as follows from (9). 
The second term on the right-hand side represents a high-pass filter [i.e., τ s/(τ s + 1)] that 
integrates the angular rate sensors to provide the wave-induced angular motions. By filtering the 
signals in this way we do not introduce any time delays, that is, the process is an all-pass filter 
that removes the unwanted drift in the rate gyros while retaining the low-frequency tilt reference. 
 However, the first-order filter used in the original implementation allows significant leakage of 
the integrated angular rate component beyond the cutoff frequency.   This generates noise due to 
integration of angular rate sensors that are often characterized by significant drift at low-
frequencies.  Therefore, the most recent method used to estimate the Euler angles uses a fourth-
order Butterworth filter, which effectively removes the adverse effects of leakage into the lowest 
frequencies.   The fourth-order filters are not integrating complimentary filters and will distort the 
phase.   Instead, the angular rates are numerically integrated and the 4th-order high-pass filter is 
applied forward and then backward to the integrated time series to remove the phase shift (Miller 
et al. 2008).    This time series is then added to the forward and backward low-pass filtered tilts 
from the accelerometers.   This procedure can be summarized as: 

( )obs
obsobs HP
g
yHP

g
y

φφ +⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈

!!!!
    (11) 

where HP represents a high-pass filter operator applied in the forward and backward direction, 
and is numerically integrated prior to filtering using the trapezoidal formula.  The bracketed term 
provides the low-pass filtered tilts from the accelerometers. 

3.2.4 Platform Motion 
 
 The Euler angle estimates are then used to define the transformation matrix, ),,( ψθφT , that 

is used to compute the platform velocities motV
!

.   The platform velocity is defined as 

hplpmot VVV
!!!

+=       (12) 
 
where we have divided the velocities into low-pass (lp) and high-pass (hp) components. The high-
pass platform velocities are computed by rotating the strapped down accelerations into the fixed 
frame using the transformation matrix, subtracting the gravity vector, integrating the remainder, 
and then high-pass filtering the resultant velocities,  
 

])([∫ += dtgxTHPV obshp
!!

""
!

    (13) 

where gkg ˆ−=! and g is the gravitational acceleration. 
 This high-pass component of the platform velocity provides an estimate of the true wind 
velocity relative to the buoy:  
 

hpobsobs
buoy
true VRVTV

!!!!!
+×Ω+= )(       (14) 

 
The low-pass components are computed only for the horizontal velocities (i.e., we assume the 
buoy does not leave the ocean surface) using a GPS to measure the buoy speed relative to Earth 
or a current meter to measure the buoy speed relative to water. The combination of the high-pass 
and low-pass signals results in a value of motV

!
that describes the mean velocity relative to the 

frame of reference plus the fluctuating velocity components computed from our accelerometers. 
For example, the relative velocity components obtained from the current meters are rotated to 
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give the north and west components. When these are added from the north and west 
components of the true wind speed relative to the buoy, we obtain the wind velocity relative to the 
water: 

0VVV buoy
true

water
true

!!!
+=       (15) 

where 0V
!

is the buoy velocity relative to water.  Obviously, in the absence of a current meter, 
the velocities are measured relative to Earth. 
 

3.3 Known Theoretical Limitations 
 The velocity measurements made on a surface buoy differ from those made on a fixed 
platform.   The buoy measurements are essentially made in a wave-following coordinate system 
while the tower measurements are made relative to earth.   This causes uncertainty on how to 
interpret fluxes made in either coordinate system.  For example, measurements from fixed 
platforms (e.g., Hristov et al. 2001) show clear wave-induced fluctuations in the measured 
velocities.   The correlation between these fluctuations is associated with a wave-induced 
component of the momentum flux at the height of measurement.    However, the (quasi-potential) 
flow is expected to follow the long waves upon which a buoy rides.   Therefore, one would expect 
to see less wave-induced fluctuations measured by an anemometer in a wave-following 
coordinate system.  The same correlation associated with the wave-induced momentum flux is 
still expected because these are mainly a result of the non-potential (rotational) component of the 
flow.   However, there remains some uncertainty as to how to remove the wave-induced platform 
motion in this coordinate system.  For example, if the anemometer is generally in a coordinate 
system following the flow, then “removing” the low frequency platform velocities that are not 
actually part of the measured wind velocities may be adding noise.   Research to date has shown 
that this is mainly a problem in light winds over swell, i.e., old seas.    

One simple solution is to move the cutoff frequency to a higher value, which effectively removes 
the low-frequency platform velocities that are not actually present in the measured wind 
velocities.   This requires a means to dynamically choose the value of the cutoff frequency based 
on, e.g., wave age or wave slope.   This approach is an area of active research and we expect 
such a capability in future revisions.   It should be noted that the initial version of the code sets 
the cutoff frequency to 1/(12 seconds), such that it is generally at a slightly lower frequency than 
the dominant waves.    

3.4 Revision History 
No revisions to date. 

4  Implementation  

4.1 Overview 
The current implementation of the FDCHP collects all of the data required by (14) to compute the 
true wind speed relative to the buoy for 20 minutes out of every hour.  The sonic anemometer and 
IMU data is merged, time-stamped using the processor’s internal clock and stored as the level 0 
products WINDTUR_L0, TMPATUR_L0 and MOTFLUX_L0.  The processor will compute 
ancillary data that will be telemetered to shore to monitor system performance.   However, DPAs 
are not required for this data.     
 
Once recovered, the time series are processed using DPAs that carry out the above steps to 
compute the motion-corrected time series of wind speed WINDTUR_L1 and TMPATUR_L1.  
Thirty seconds of data from the beginning and end of the 20 minute time series are discarded to 
remove the edge effect of the filters using in the routines.  The remaining 19 minutes of true wind 
velocities are rotated into the longitudinal (streamwise) wind.   This rotation forces the mean 
cross-wind and vertical components of the wind to zero and has been shown to reduce the 
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effect of flow distortion on the fluxes (Oost et al. 1994).   The rotated velocities and sonic 
temperature are then linearly detrended by removing a least-squares-fit to the time series, 
which provides fluctuations about removed trend.  The kinematic components of the buoyancy, 

along-wind, and cross-wind momentum fluxes, i.e., '' sTw , ''wu  and ''wv , respectively, are 
then computed to provide estimates of (1) and (2).   The inclusion of the surface currents 
required to compute the fluxes relative to water using (15) as well as the small correction to 
account for the use of sonic temperature (i.e., rather than virtual temperature) would be carried 
out in post-processing. 

4.2 Inputs  
 
The inputs for the Data Processing Algorithms (DPAs) are the measured time series from the 
sonic anemometer/thermometer and IMU, which are sampled at 10 Hz.   Specifically, these are: 
 

- The Level 0 Data Product WINDTUR_L0, which is the wind speed components [i.e., 
U(t), V(t), and W(t)] measured in the buoy frame of reference by the sonic anemometer;  

- The Level 0 Data Product TMPATUR_L0, which is the speed of sound [i.e., Cs(t)] 
measured by the sonic anemometer;   

- The Level 0 Data Product MOTFLUX_L0, which is: 
o the horizontal and vertical linear accelerations [i.e., )(tx!! , )(ty!!  and )(tz!! ] 

measured in the buoy frame of reference by the IMU accelerometers;  
o the roll, pitch and yaw rates [i.e., )(tφ! , )(tθ!  and )(tψ! ] measured in the buoy 

frame of reference measured by the IMU gyros; and 
o the roll, pitch and yaw [i.e., )(tφ , )(tθ  and )(tψ ] measured in the buoy frame 

of reference measured by the IMU magnetometer. 
 
The raw 10-Hz input data (i.e., MOTFLUX_L0, TMPATUR_L0, and WINDTUR_L0 data products) 
are stored on board the buoy in the processors non-volatile system memory, such that all of the 
data required to reprocess the data will be available on recovery.  These variables are stored in 
the units outputted from the sonic anemometer/thermometer and IMU.   These units and the 
factory calibration required to convert them to physical units is summarized in Table 1. 

Table 1.  Units of stored Level 0 data products and factory calibrations to convert to physical 
units. 

 
Device 

 
Variable(s) 

Symbol 

 
Stored Units 

Factory Calibration  
Physical Units 

Gain Offset 

 
Sonic Anemometer 

Velocity 
Components 

U,V,W 

 
Counts 

 
0.01 

 
0 

 
m/s 

 
Sonic Anemometer 

Speed of Sound  
Cs 

 
Counts 

 
0.01 

 
0 

 
m/s 

 
Accelerometers 

Linear 
Accelerations 

x!! , y!! , z!!  

 
Decimal Counts 

 
1 

 
0 

 
m/s2 

 
Angular Rate 

Sensors 

Angular Rates 
φ! ,θ! ,ψ!  

 
Decimal Counts 

 
1 

 
0 

 
radians/s 

 
Magnetometer 

Angles 
φ ,θ ,ψ  

 
Decimal Counts 

 
1 

 
0 

 
radians 

 
The speed of sound is converted to sonic temperature using the following equation 
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KCCT s
s 15.273

403
][

2

−=°     (16) 

The factory calibrated velocity, sonic temperature and motion data are the inputs to the motion 
correction DPA shown in the FCDHP Processing Flow document (1342-00280). 

4.3 Processing Flow  
 
Data Product Algorithms (DPAs) will process the Level 0 data upon recovery to compute the 
Level 1 data products WINDTUR_L1 and TMPATUR_L1, which are time series of the motion-
corrected wind velocity and sonic temperature, respectively.   The Level 1 products are then used 
to produce the Level 2 data products FLUXMOM-U_L2, FLUXMOM-V_L2, and FLUXHOT_L2, 
which are the along-wind momentum, cross-wind momentum and buoyancy fluxes, respectively.  
 
The specific steps necessary to create the FCDHP Level 1 and 2 data products are shown in the 
FCDHP Processing Flow document (1342-00280) and can be summarized as: 
 

1. FDCHP Dataset Agent Driver reads in WINDTUR_L0, TMPATUR_L0, and 
MOTFLUX_L0 from recovered data and passes them to the DPA (see Appendix A-1 for 
example code). 

2. The factory calibrations and (16) are applied to convert data to physical units as 
summarized in Table 1. 

3. Secondary post-deployment calibrations are read in and applied as necessary. 
4. Despiking and additional automated quality control (QC) is applied to the time series. 
5. The calibrated and automated QC data quality are passed to the motion correction DPA: 

a. The Euler angles are approximated using (11). 
b. These angles are used to update the angular rates using (8) with successive 

approximation of φ , θ and ψ using (11).   This is repeated 5 times. 
c. The Euler angles are used to rotate the measured accelerations into the vertical 

using the transformation matrix given by (5). 
d. The gravity vector is removed and the accelerations are integrated and filtered 

using (13) to compute the platform velocity, hpV
!

. 

e. The measured wind velocities, obsV
!

, are added to the measured angular 

velocity, Robs

!!
×Ω . 

f. Their sum is transformed into the vertical and added to the platform velocity to 
produce the wind velocities relative to Earth, buoy

trueV
!

, as shown by (14).   

6. The first and last 30 seconds of buoy
trueV
!

are removed to produce WINDTUR_L1, which 
contains 3 element time series of the wind components relative to Earth.  The right-
handed orientation of the wind components are:  

WINDTUR-VLN_L1 is positive to the North,  
WINDTUR-VLW_L1 is positive to the West  
WINDTUR-VLU_L1 is positive upward  

   
7. The velocity components in WINDTUR_L1 are rotated into the longitudinal 

(streamwise) wind.    
8. The first and last 30 seconds of the sonic temperature are removed to match the velocity 

time series. 
9. The rotated velocities and sonic temperature are linearly detrended to provide the 

velocity and temperature fluctuations ',',' wvu and 'sT . 
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10. The vertical velocity fluctuations are correlated with the temperature and horizontal 

velocity fluctuations to compute the kinematic form of the buoyancy flux, '' sTw , along-

wind momentum flux, ''wu , and cross-wind momentum flux, ''wv .    
11. These provide the Level 2 fluxes computed over 19 minute averaging periods: 

a. FLUXHOT_L2 = '' sTw  

b. FLUXMOM-U_L2 = ''wu   

c. FLUXMOM-V_L2 = ''wv .    
 

Note:  The wind speeds relative to earth and water are require to compute the fluxes relative to 
water.   Bulk estimates of the latent heat flux are required to provide the small correction 

needed to convert '' sTw  to '' vTw .  Additionally, bulk estimates of the air density, ρ, and 
specific heat at constant pressure, cp, are required to convert the kinematic values into the 
momentum and heat fluxes with units of N/m2 and W/m2, respectively.    

4.4 Outputs 

4.4.1 The following L1 Products are output 
WINDTUR_L1:  3-element 19 minute time series of motion-corrected velocity vector relative to 
Earth where the orientation of the wind components are:  

WINDTUR-VLN is positive to the North [m/s] 

WINDTUR-VLW is positive to the West [m/s] 

WINDTUR-VLU is positive upward [m/s] 

TMPATUR:  Time series of sonic temperature in °C. 

4.4.2 The following L2 Products are output: 

FLUXMOM-U: ''wu  Along-wind component of momentum flux [m2/s2] relative to Earth 

FLUXMOM-V: ''wv  Cross-wind component of momentum flux [m2/s2] relative to Earth 

FLUXHOT: '' sTw  Buoyancy Flux  [m/s °K]  

4.5 Computational and Numerical Considerations  

4.5.1 Numerical Programming Considerations  
There are no numerical programming considerations for this computation. No special numerical 
methods are used. 

4.5.2 Computational Requirements 
N/A 

4.6 Code Verification and Test Data Set 
The example input and output data are accessible through the following path: 
https://alfresco.oceanobservatories.org/  and navigate to OOI >> REFERENCE >> 
Data Product Specification Artifacts >> 1341-00280_FDCHP 
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Appendix A Example C and Matlab processing code (UConn/WHOI) 
The MATLAB® code used to process the input data has been converted to an executable file to 
run on the buoy processor using MATLAB’s Coder®.   This required conversion of the MATLAB® 
processing code and the intrinsic functions it calls to C++ files.  Only a subset of intrinsic 
functions is available with Coder®.  Those functions that were not available (e.g., the MATLAB ® 
filtfilt and medfilt1 functions) have been created as functions within the processing code.   

 

The processing code and any intrinsic functions that had to be written are given by: 

function [fluxes] = ProcessDCFS03(rawdata,lat); 
  
Ts1 = 10/100;                % Sampling period for DCFS 
fs = 1/Ts1;                  % Sampling frequency for R2 
dt=1/fs; 
tc1=12;                      %Define constants for filters 
tc2=tc1; 
fc1=1/tc1; 
fc2=1/tc2; 
fcwaves=1/40; 
rad2deg=180.0/pi; 
G=9.80665; 
  
% JBE 06/29 JW 07/18 
version_number=1.3; 
status_val = uint32(1); 
  
%JBE Redefine files for 10 Hz and tc1=12 
ahi=[1,-3.869797539975553,5.617802044587563,-3.625896801659080,0.877898078061700]; 
bhi=[0.936962154017744,-3.747848616070974,5.621772924106461,-
3.747848616070974,0.936962154017744]; 
  
gv=grv(lat); 
Rvec=zeros(1,3);               %Distance vector 
Rvec(3)=0.753;                 %Vertical separation 
roffset=0;                     %Maybe non-zero for post-calibration 
poffset=0; 
  
L=12000;                       %Fix length 
%L=length(rawdata); 
  
dcfsdata=zeros(15,L); 
  
  
dcfsdata(1,1:L) = 
datenum(rawdata(1,1:L),rawdata(2,1:L),rawdata(3,1:L),rawdata(4,1:L),rawdata(5,1:L),rawdata(6,1:L)); 
%UNITS#3 Velocities are m/s 
dcfsdata(2,1:L) = 0.01 * rawdata(8,1:L);  %wind x 
dcfsdata(3,1:L) = 0.01 * rawdata(9,1:L);  %wind y 
dcfsdata(4,1:L) = 0.01 * rawdata(10,1:L); %wind z 
dcfsdata(5,1:L) = 0.01 * rawdata(11,1:L); %Speed of sound 
% Convert Sonic Speed of Sound to temperature 
dcfsdata(5,1:L) = dcfsdata(5,1:L).* dcfsdata(5,1:L)/403  –  273.15; 
%UNITS#4 - Rates are in radians/s, accels are in G=9.80665 m/s^2, pitch,roll and yaw are in radians.  
dcfsdata(6,1:L) = rawdata(20,1:L); %heading 
dcfsdata(7,1:L) = rawdata(18,1:L); %roll 
dcfsdata(8,1:L) = rawdata(19,1:L); %pitch 
dcfsdata(9,1:L) = rawdata(12,1:L); %rate x 
dcfsdata(10,1:L) = rawdata(13,1:L); %rate y 
dcfsdata(11,1:L) = rawdata(14,1:L); %rate z 
%JBE The temperature is no longer output from IMU - Use this as counter 



Data Product Specification for FDCHP Data Products 

 
Ver 1-00 1341-00280 Page 16 

dcfsdata(12,1:L) = 1:L';            % counter 
dcfsdata(13,1:L) = rawdata(15,1:L); % accel x 
dcfsdata(14,1:L) = rawdata(16,1:L); % accel y 
dcfsdata(15,1:L) = rawdata(17,1:L); % accel z 
disp(mean(rawdata(17,1:L))); 
disp(datestr(dcfsdata(1,1))); 
  
% Convert IMU from North East Down (right-handed z-down) coordinate system  
% to North West Up (right-handed z-up) coordinate system to match Sonic 
  
dcfsdata(8,1:L) = -1.0*dcfsdata(8,1:L);   %y pitch 
dcfsdata(6,1:L) = -1.0*dcfsdata(6,1:L);   %z heading(yaw) 
dcfsdata(10,1:L) = -1.0*dcfsdata(10,1:L); %rate y 
dcfsdata(11,1:L) = -1.0*dcfsdata(11,1:L); %rate z 
dcfsdata(14,1:L) = -1.0*dcfsdata(14,1:L); %accel y 
dcfsdata(15,1:L) = -1.0*dcfsdata(15,1:L); %accelz 
  
sonics=zeros(3,L); 
Tv=zeros(1,L); 
compass=zeros(1,L); 
roll=zeros(1,L); 
pitch=zeros(1,L); 
platform=zeros(3,L); 
deg_rate=zeros(3,L); 
  
counter=dcfsdata(12,1:L); 
  
%********************************************** 
% Sonic mean, max, min, std of velocities 
%********************************************** 
sonics(1:3,1:L)=dcfsdata(2:4,1:L); 
rdir=atan2(mean(sonics(2,1:L)),mean(sonics(1,1:L))); 
  
%********************************************** 
% Sonic mean, max, min, std of temperature 
%********************************************** 
Tv=dcfsdata(5,1:L); 
  
%********************************************** 
% Prep Compasss 
%********************************************** 
% Fill in bad points first units and signs  
% UNITS#5-Roll, pitch and yaw are in radians 
compass=dcfsdata(6,1:L); 
roll=dcfsdata(7,1:L); 
pitch=dcfsdata(8,1:L); 
compass(1:10)=compass(11);          %first few points are often bad 
compass(L-9:L)=compass(L-10);      %last few points are often bad 
  
%********************************************** 
% UNITS#6 Calc compstd,compmin and compmax in radians  
%********************************************** 
  
gx=cos(compass); 
gy=sin(compass); 
compcos = mean(gx); 
compsin = mean(gy); 
compavg = atan2(compsin,compcos); 
  
%JBE Leave this in case we add or subtract when post-calibrating 
  
if (compavg < 0) 
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    compavg=compavg + 2.0*pi; 
elseif (compavg >= 2*pi) 
    compavg=compavg -2.0*pi; 
end 
  
[gx] = despikesimple(gx); 
[gy] = despikesimple(gy); 
gsmooth=atan2(gy,gx); 
i=find(gsmooth<0); 
gsmooth(i)=gsmooth(i)+2*pi; 
gyro=gsmooth; 
  
gchk=unwrap(gyro); 
stdhdg=std(gchk); 
hdgrange=max(gchk)-min(gchk); 
if (hdgrange>(120/180*pi) | stdhdg>(45/180*pi)) 
    goodcompass=0; 
else 
    goodcompass=1; 
end 
disp(goodcompass) 
%********************************************** 
% Angular rate mean, max, min and std 
% UNITS#9 Rates are in radian/sec 
%********************************************** 
deg_rate = dcfsdata(9:11,1:L);  
[deg_rate] = despikesimple(deg_rate); 
  
%********************************************** 
% Accelerometer mean, max, min and std 
% UNITS#8 convert platform accels to m/s^2 
%********************************************** 
platform = dcfsdata(13:15,1:L)*G; 
[platform] = despikesimple(platform); 
gcomp=zeros(1,3); 
gcomp(1)=mean(platform(1,1:L)); 
gcomp(2)=mean(platform(2,1:L)); 
gcomp(3)=mean(platform(3,1:L)); 
  
g=sqrt(sum(gcomp.*gcomp)); 
platform=platform*gv/g; 
platform(1,:)=platform(1,1:L)+poffset; 
platform(2,:)=platform(2,1:L)+roffset; 
  
gcomp(1)=mean(platform(1,1:L)); 
gcomp(2)=mean(platform(2,1:L)); 
gcomp(3)=mean(platform(3,1:L)); 
g=sqrt(sum(gcomp.*gcomp)); 
platform=platform*gv/g; 
  
%********************************************* 
%  Compute Angles and Accelerations 
%********************************************* 
its=5; 
[euler,dr] = anglesclimodeyaw(ahi,bhi,fs,platform,deg_rate,gyro,its,goodcompass,L);    % euler angles are 
right-handed 
[acc, uvwplat, nope] = accelsclimode(bhi,ahi,fs,platform,euler,L); 
[uvw,uvwr,uvwrot] = sonic(sonics,dr,euler,uvwplat,Rvec,L); 
  
edge = fix(1 * 30 * fs); 
tot=length(uvw)-edge*2; 
incr1=1+edge; 
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incr2=incr1+tot-1; 
incr=incr1:incr2; 
  
UVWraw=sonics(1:3,incr); 
UVW=uvw(1:3,incr);  %These is L1 
Ts=Tv(incr);        %This is L1 
  
[u, alpha, beta] = alignwind(UVW); 
  
%************************************************** 
% Fluxes are computed relative to Earth 
%************************************************** 
wspd=mean(u(1,1:tot)); 
u=u'; 
uh=sqrt(u(1:tot,1).*u(1:tot,1)+u(1:tot,2).*u(1:tot,2)); 
u=detrend(u); 
Ts=detrend(Ts'); 
fluxes=zeros(1,3); 
uwavg=mean(u(1:tot,3).*u(1:tot,1)); 
vwavg=mean(u(1:tot,3).*u(1:tot,2)); 
wTavg=mean(u(1:tot,3).*Ts); 
  
fluxes(1) =uwavg;  %These are L2 
fluxes(2)=vwavg; 
fluxes(3)=wTavg; 
  
end 
  
% ************************************************************************************************* 
%  Function calls 
% ************************************************************************************************* 
  
function [euler, dr] = anglesclimodeyaw(ahi,bhi,sf,accm,ratem,gyro,its,goodcompass,L) 
%# codegen 
% Function from EDDYCORR toolbox 
% 
% Sept 2000     Replaced integrations with cumtrapz function 
% 
% May 16 1997 - modified to remove the first estimate of the euler 
%   angles in the nonlinear euler angle update matrix, F^-1 matrix 
%   is approximated by the identity matrix. still uses trapezoidal 
%   intetgration 
% 
% INPUT 
% 
%    ahi,bhi - filter coefficients 
%    sf    - sampling frequency 
%    accm  - (3xN) array of recalibrated linear accelerations,accx,accy,accz 
%    ratem - (3XN) array of recalibrated angular rates, ratex, ratey, ratez 
%    gyro  - (1XN) array of gyro signal 
%    its   - number of interations 
% 
% OUTPUT 
% 
%    euler    - (3XN) array of the euler angles (phi, theta, psi) in radians. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
% THE ANGLES ARE  ESTIMATED FROM 
% 
% angle = slow_angle (from accelerometers) + fast_angle (integrated rate sensors) 
% 
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% CALCULATE GRAVITY 
  
gravxyz=zeros(1,3); 
gravxyz(1) = mean(accm(1,1:L)); 
gravxyz(2) = mean(accm(2,1:L)); 
gravxyz(3) = mean(accm(3,1:L)); 
gravity = sqrt( sum(gravxyz.^2) ); 
  
% Unwrap compass 
gyro = unwrap(gyro); 
  
% REMOVE MEAN FROM RATE SENSORS 
  
ratem = detrend(ratem')'; 
  
% LOW FREQUENCY ANGLES FROM ACCELEROMETERS AND GYRO 
% SLOW ROLL FROM GRAVITY EFFECTS ON HORIZONTAL ACCELERATIONS. LOW PASS 
% FILTER SINCE HIGH FREQUENCY HORIZONTAL ACCELERATIONS MAY BE 'REAL' 
% 
% PITCH 
accm1grav = -accm(1,1:L)./gravity; %Small angle approx 
accm1grav = min(accm1grav,1);                
accm1grav = max(accm1grav,-1); 
theta = asin(accm1grav); 
  
thetaslow = theta - filtfilter(bhi,ahi,theta); 
  
% ROLL 
accm2grav = accm(2,1:L)./gravity; %Small angle approx 
accm2grav = accm2grav./cos(thetaslow); 
accm2grav = min(accm2grav,1);                
accm2grav = max(accm2grav,-1); 
phi=asin(accm2grav); 
  
phislow = phi - filtfilter(bhi,ahi,phi); 
  
% YAW 
% HERE, WE ESTIMATE THE SLOW HEADING. THE 'FAST HEADING' IS NOT NEEDED 
% FOR THE EULER ANGLE UPDATE MATRIX. THE NEGATIVE SIGN PUTS THE GYRO 
% SIGNAL INTO A RIGHT HANDED SYSTEM. 
% IF THE COMPASS HAS ISSUES, WE EXTEND THE FILTER 
% SO THE INTEGRATED YAW GOES OUT TO LOW FREQUENCIES 
fc=1/240; 
ahi2=[1,-3.993489157035384,5.980488658273062,-3.980509805074932,0.993510303875667]; 
bhi2=[0.996749870266190,-3.986999481064761,5.980499221597142,-
3.986999481064761,0.996749870266190]; 
if goodcompass 
    psislow = -gyro - filtfilter(bhi2,ahi2,-gyro); 
else 
    psislow = -median(gyro)*ones(size(phi)); 
end 
  
% USE SLOW ANGLES AS FIRST GUESS 
euler  = [phislow; thetaslow; psislow]; 
rates = update(ratem,euler,L); 
  
% INTEGRATE AND FILTER ANGLE RATES, AND ADD TO SLOW ANGLES 
  
for i = 1:its 
    phi_int   = 1/sf*cumtrapz(rates(1,1:L)); 
    phi       = phislow   + filtfilter(bhi,ahi,phi_int);  
    theta_int = 1/sf*cumtrapz(rates(2,1:L)); 
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    theta     = thetaslow + filtfilter(bhi,ahi,theta_int);  
    psi_int = 1/sf*cumtrapz(rates(3,1:L)); 
     
    if goodcompass 
        psi   = psislow   +  filtfilter(bhi2,ahi2,psi_int);  
    else 
        psi   = psislow   + psi_int; 
    end 
    euler  = [phi; theta; psi]; 
    rates = update(ratem,euler,L); 
    rates(1:2,1:L) = detrend(rates(1:2,1:L)','constant')'; 
    rates(3,1:L) = detrend(rates(3,1:L)','constant')'; 
end 
  
dr = ratem; 
end 
  
function [Y] = despikesimple(Y); 
%Remove Outliers 
  
[col, N]=size(Y); 
t=1:N; 
for iter=1:3         %Do it threetime    
   for tot=1:col 
      M=median(Y(tot,1:N)); 
      S=std(Y(tot,1:N)); 
      j=find(Y(tot,1:N)<M+4*S & Y(tot,1:N)>M-4*S); 
      Y(tot,1:N)=interp1(t(j),Y(tot,j),t,'nearest'); 
   end       
end 
  
end 
  
function [acc,uvwplat,xyzplat] = accelsclimode(bhi,ahi,sf,accm,euler,L) 
%#codegen 
% Function from EDDYCORR toolbox 
% 
% 2008          Allows filter to have different cutoff from angular filter 
% 
% Sept 2000     Replaced integrations with cumtrapz function 
% 
% Mar 3 1998    Redesigned the high pass filter (see below). 
% 
% Revised: June 10, 1997 - high pass filter with higher cutoff  
%              frequency than previous version 
%  
% Integrate linear accelerations to get platform velocity 
% and displacement. After each integration, signals are  
% high pass filtered to remove low frequency effects. 
% 
% INPUT 
% 
%    bhigh,ahigh - high pass filter coefficients 
%    sf      - sampling frequency 
%    accm    - calibrated linear accelerations (output from recal.m) 
%    euler   - (3xN) Euler angles phi,theta,psi  
% 
% OUTPUT: 
% 
%    acc     - (3XN) linear accelerations in FLIP/Earth reference  
%    uvwplat - (3XN) linear velocities at the point of motion measurement 
%    xyzplat - (3XN) platform displacements from mean position 
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% DEFINE ARRAY SIZES UP FRONT 
  
gravxyz=zeros(1,3); 
gravxyz(1) = mean(accm(1,1:L)); 
gravxyz(2) = mean(accm(2,1:L)); 
gravxyz(3) = mean(accm(3,1:L)); 
gravity = sqrt( sum(gravxyz.^2) ); 
  
acc      = trans(accm,euler,0,L);    % first rotate 
acc(3,1:L) = acc(3,1:L) - gravity;      % remove gravity 
  
% INTEGRATE ACCELERATIONS TO GET PLATFORM VELOCITIES 
  
uvwplat = zeros(size(accm)); 
for i=1:3 
    uvwplat(i,1:L) = cumtrapz(acc(i,1:L))/sf; 
    uvwplat(i,1:L) = filtfilter(bhi,ahi,uvwplat(i,1:L)); 
end 
  
% INTEGRATE AGAIN TO GET DISPLACEMENTS 
  
xyzplat = zeros(size(accm)); 
for i=1:3 
    xyzplat(i,1:L) = cumtrapz(uvwplat(i,1:L))/sf; 
    xyzplat(i,1:L) = filtfilter(bhi,ahi,xyzplat(i,1:L)); 
end 
end 
  
function [uvw,uvwr,uvwrot] = sonic(sonics,omegam,euler,uvwplat,R,L) 
%#codegen 
% Function from EDDYCORR toolbox 
% 
% CORRECT SONIC ANEMOMETER COMPONENTS FOR PLATFORM MOTION AND ORIENTATION. 
% 
% INPUTS: 
% 
%    Sonics     - row of integers corre to sonic numbers which are to be  
%         corrected 
%    omegam     - (3XN) measured angular rate 'vector' in platform frame 
%    euler      - (3XN) array of euler angles (phi, theta, psi) 
%    uvwplat    - (3XN) array of platform velocities (output from accels_.m) 
%  
% OUTPUTS: 
% 
%    uvw        - (MXN) array of corrected sonic anemometer components, in the  
%                   fixed earth reference frame  (North-West-up) 
% 
% CALCULATE WINDS IN EARTH BASED FRAME. THE ANGULAR VELOCITY IS CALCULATED AS 
% THE CROSS PRODUCT BETWEEN THE ANGULAR RATE VECTOR AND POSITION VECTOR.THE  
% MEASURED AND ANGULAR VELOCITIES ARE IN THE PLATFORM FRAME AND MUST BE 
% ROTATED INTO THE EARTH FRAME. THE PLATFORM VELOCITY IS ALREADY IN THE EARTH 
% FRAME (FROM ACCELS.M), SO HERE THEY CAN JUST BE ADDED. 
% 
%  UVW =  MEASURED VELOCITY + ANGULAR RATE INDUCED VELOCITIES +  
%     INTEGRATED ACCELEROMETERS   
  
Rvec = [R(1); R(2); R(3)] * ones(1,L); 
uvwrot = cross(omegam,Rvec); 
    
uvw  = trans(sonics + uvwrot,euler,0,L) + uvwplat; 
uvwr = trans(sonics + uvwrot,euler,0,L); 
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end 
  
function OUT = trans(IN,ANGLES,IFLAG,L) 
  
if nargin==2 
    IFLAG=0; 
    L=12000; 
end 
  
sinp = zeros(1,L); 
cosp = zeros(1,L); 
sint = zeros(1,L); 
cost = zeros(1,L); 
sinps = zeros(1,L); 
cosps = zeros(1,L); 
  
sinp  = sin(ANGLES(1,1:L)); 
cosp  = cos(ANGLES(1,1:L)); 
sint  = sin(ANGLES(2,1:L)); 
cost  = cos(ANGLES(2,1:L)); 
sinps = sin(ANGLES(3,1:L)); 
cosps = cos(ANGLES(3,1:L)); 
  
up = IN(1,1:L); 
vp = IN(2,1:L); 
wp = IN(3,1:L); 
  
if IFLAG            % =1, from xyz to x'y'z' 
     
    u = up.*cost.*cosps                           + vp.*cost.*sinps                           - wp.*sint; 
    v = up.*(sinp.*sint.*cosps-cosp.*sinps) + vp.*(sinp.*sint.*sinps+cosp.*cosps) + wp.*(cost.*sinp); 
    w = up.*(cosp.*sint.*cosps+sinp.*sinps) + vp.*(cosp.*sint.*sinps-sinp.*cosps) + wp.*(cost.*cosp); 
     
else        % =0, from x'y'z' to xyz 
     
    u = up.*cost.*cosps + vp.*(sinp.*sint.*cosps-cosp.*sinps) + wp.*(cosp.*sint.*cosps+sinp.*sinps); 
    v = up.*cost.*sinps + vp.*(sinp.*sint.*sinps+cosp.*cosps) + wp.*(cosp.*sint.*sinps-sinp.*cosps); 
    w = up.*(-sint)       + vp.*(cost.*sinp)                          + wp.*(cost.*cosp); 
     
end; 
  
OUT = [u;v;w]; 
end 
  
function OUT = update(IN,ANGLES,L) 
% Function from EDDYCORR toolbox 
% 
%  This function computes the angular update matrix 
%  as described in Edson et al. (1998) and Thwaites 
%  (1995) page 50. 
  
p  = ANGLES(1,1:L); 
t  = ANGLES(2,1:L); 
ps = ANGLES(3,1:L); 
  
up = IN(1,1:L); 
vp = IN(2,1:L); 
wp = IN(3,1:L); 
  
u = up  + vp.*sin(p).*tan(t) + wp.*cos(p).*tan(t); 
v =  0  + vp.*cos(p)         - wp.*sin(p); 
w =  0  + vp.*sin(p)./cos(t) + wp.*cos(p)./cos(t); 
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OUT = [u;v;w]; 
end 
  
function [u, alpha, beta] = alignwind(U) 
% Function from EDDYCORR toolbox 
% 
Ub = mean(U(1,:)); 
Vb = mean(U(2,:)); 
Wb = mean(U(3,:)); 
Sb = sqrt(Ub^2+Vb^2); 
beta  = atan2(Wb,Sb); 
alpha = atan2(Vb,Ub); 
Ur =  U(1,:)*cos(alpha)*cos(beta) + U(2,:)*sin(alpha)*cos(beta) + U(3,:)*sin(beta); 
Vr = -U(1,:)*sin(alpha)           + U(2,:)*cos(alpha); 
Wr = -U(1,:)*cos(alpha)*sin(beta) - U(2,:)*sin(alpha)*sin(beta) + U(3,:)*cos(beta); 
  
% predefine u for coder 
nU=length(U); 
u=zeros(3,nU); 
  
u(1,:) = Ur; 
u(2,:) = Vr; 
u(3,:) = Wr; 
  
beta  = beta*180/pi; 
alpha = alpha*180/pi; 
end 
  
function g=grv(lat) 
gamma=9.7803267715; 
c1=0.0052790414; 
c2=0.0000232718; 
c3=0.0000001262; 
c4=0.0000000007; 
  
phi=lat*pi/180; 
x=sin(phi); 
g=gamma.*(1+c1*x.^2+c2*x.^4+c3*x.^6+c4*x.^8); 
end 
  
function y=medfilt(x,n) 
% This version of medfilt can only hand one time series at a time 
blksz = [];  
DIM = []; 
  
% Check if the input arguments are valid 
if isempty(n) 
    n = 3; 
end 
  
[x, nshifts] = shiftdim(x); 
  
% Verify that the block size is valid. 
siz = size(x); 
blksz = siz(1); % siz(1) is the number of rows of x (default) 
  
% Initialize y with the correct dimension 
y = zeros(siz); 
  
% Call medfilt1D (vector) 
for i = 1:prod(siz(2:end)), 
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    y(:,i) = medfilt1D(x(:,i),n,blksz); 
end 
  
% Convert y to the original shape of x 
    y = shiftdim(y, -nshifts); 
end 
  
function y = medfilt1D(x,n,blksz) 
%MEDFILT1D  One dimensional median filter. 
% 
% Inputs: 
%   x     - vector 
%   n     - order of the filter 
%   blksz - block size 
  
nx = length(x); 
if rem(n,2)~=1    % n even 
    m = n/2; 
else 
    m = (n-1)/2; 
end 
X = [zeros(m,1); x; zeros(m,1)]; 
y = zeros(nx,1); 
  
% Work in chunks to save memory 
indr = (0:n-1)'; 
indc = 1:nx; 
blksz=1; 
for i=1:blksz:nx 
    ind = indc(ones(1,n),i:min(i+blksz-1,nx)) + ... 
    indr(:,ones(1,min(i+blksz-1,nx)-i+1)); 
    xx = reshape(X(ind),n,min(i+blksz-1,nx)-i+1); 
    y(i:min(i+blksz-1,nx)) = median(xx,1); 
end 
end 
  
function yout = filtfilter(b,a,xin) 
% x must be a collumn vector for this to work 
%FILTFILT Zero-phase forward and reverse digital IIR filtering. 
%   Y = FILTFILT(B, A, X) filters the data in vector X with the filter 
%   described by vectors A and B to create the filtered data Y.  The 
%   filter is described by the difference equation: 
% 
%     a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) 
%                           - a(2)*y(n-1) - ... - a(na+1)*y(n-na) 
% 
%   The length of the input X must be more than three times 
%   the filter order, defined as max(length(B)-1,length(A)-1).  
% 
%   References: 
%     [1] Sanjit K. Mitra, Digital Signal Processing, 2nd ed., 
%         McGraw-Hill, 2001 
%     [2] Fredrik Gustafsson, Determining the initial states in forward- 
%         backward filtering, IEEE Transactions on Signal Processing, 
%         pp. 988-992, April 1996, Volume 44, Issue 4 
  
%   Copyright 1988-2010 The MathWorks, Inc. 
%   $Revision: 1.7.4.8 $  $Date: 2011/05/13 18:07:25 $ 
  
% If input data is a row vector, convert it to a column 
isRowVec = size(xin,1)==1; 
if isRowVec 
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    x = xin(:); 
else 
    x=xin;  
end 
[Npts,Nchans] = size(x); 
  
%---------------------------------------------------------------------- 
% Parse coefficients vectors and determine initial conditions 
% b and a are vectors that define the transfer function of the filter 
%---------------------------------------------------------------------- 
[L,nfilt] = size(b); 
% Check coefficients 
b = b(:); 
a = a(:); 
nfact = 3*(nfilt-1);  % length of edge transientsl 
  
% The non-sparse solution to zi may be computed using: 
zi=(eye(nfilt-1) - [-a(2:nfilt), [eye(nfilt-2); zeros(1,nfilt-2)]]); 
zi=zi \ (b(2:nfilt) - b(1)*a(2:nfilt)); 
  
% Filter the data 
y = [2*x(1)-x(nfact+1:-1:2); x; 2*x(end)-x(end-1:-1:end-nfact)]; 
  
% filter, reverse data, filter again, and reverse data again 
y = filter(b,a,y,zi*y(1)); 
y = y(end:-1:1); 
y = filter(b,a,y,zi*y(1)); 
  
% retain reversed central section of y 
y = y(end-nfact:-1:nfact+1); 
if isRowVec 
     
    yout = y.';   % convert back to row if necessary 
else  
    yout = y; 
end 
end 
 

Appendix B Output Accuracy  
 

For an accuracy analysis of the flux measurements, see Bigorre, et al. (2013)  and F. Bradley and 
C. Fairall (2006), section “B3. Estimate of Turbulent Flux Errors”. 
 

Appendix C Sensor Calibration Effects  
 
<N/A> 


