

DATA PRODUCT SPECIFICATION
FOR FDCHP DATA PRODUCTS

Version 1-00
Document Control Number 1341-00280
2015-02-26

Consortium for Ocean Leadership
1201 New York Ave NW, 4th Floor, Washington DC 20005
www.OceanLeadership.org

in Cooperation with

University of California, San Diego
University of Washington
Woods Hole Oceanographic Institution
Oregon State University
Scripps Institution of Oceanography
Rutgers University

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 i

Document Control Sheet

Version Date Description Author
0-01 2014-05-08 Initial draft J. Fredericks,

J. Edson
0-02 2014-06-09 First Revision J. Edson
0-03 2015-01-19 Second Revision J. Edson
0-04 2015-01-28 Third Revision J. Edson
1-00 2015-02-26 Initial Release per ECR 1300-00479 S. White

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 iii

Table of Contents

1	
 Abstract .. 1	

2	
 Introduction .. 1	

2.1	
 Author Contact Information ... 1	

2.2	
 Metadata Information .. 1	

2.3	
 Instruments ... 5	

2.4	
 Literature and Reference Documents ... 5	

2.5	
 Terminology .. 6	

3	
 Theory .. 6	

3.1	
 Description .. 6	

3.2	
 Mathematical Theory ... 7	

3.3	
 Known Theoretical Limitations .. 11	

3.4	
 Revision History .. 11	

4	
 Implementation .. 11	

4.1	
 Overview ... 11	

4.2	
 Inputs .. 12	

4.3	
 Processing Flow .. 13	

4.4	
 Outputs .. 14	

4.5	
 Computational and Numerical Considerations .. 14	

4.6	
 Code Verification and Test Data Set ... 14	

Appendix A	
 Example C and Matlab processing code (UConn/WHOI) 15	

Appendix B	
 Output Accuracy ... 25	

Appendix C	
 Sensor Calibration Effects .. 25	

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 1

1 Abstract
The Flux Direct Covariance High Power (FDCHP) system is an instrument package that collects
vertical and horizontal wind components, air temperature and platform motion. This data is used
to directly compute air-sea fluxes of momentum and buoyancy. The air-sea flux of momentum is
the vertical transfer of horizontal momentum from the air to the ocean and is often referred to as
the wind stress. The air-sea buoyancy flux is the vertical transfer of buoyancy associated with
moist air and represents a mixture of sensible and latent heat exchange. Computation of the
fluxes is accomplished using the motion-corrected direct covariance (MCDC) approach. This
approach requires the system to measure the motion of the platform that can be used to compute
the significant wave height and its direction. The system also provides the associated means and
additional statistical measures of atmospheric turbulences and platform motion.

This document describes the computation used to calculate the OOI Level 1 and Level 2 FDCHP
products from data collected by the system. The L1 products provide the motion corrected time
series of 3-axis winds and sonic temperature denoted by WINDTUR_L1 and TMPATUR_L1 in
this document. The L2 products provide the air-sea fluxes of momentum and buoyancy
computed from the L1 products. The along-wind and cross-wind components of the momentum
flux vector are denoted by FLUXMOM-U_L2 and FLUXMOM-V_L2, respectively; while the
buoyancy flux is denoted by FLUXHOT_L2. This document is to be used by OOI programmers to
construct appropriate processes to read the L1 and L2 products.

2 Introduction

2.1 Author Contact Information
Please contact Jim Edson (james.edson@uconn.edu) or the Data Product Specification lead
(DPS@lists.oceanobservatories.org) for more information concerning the computation and other
items in this document.

2.2 Metadata Information

2.2.1 Data Product Names

The OOI L0 Core Data Product Names and Descriptive Names for the products are:

Name Descriptive Name
MOTFLUX_L0 Platform Motion in buoy reference frame [decimal counts]
TMPATUR_L0 Speed of sound [counts]
WINDTUR_L0 Wind speed components in buoy reference frame [counts]

The coefficients to convert from counts to physical units are listed in Table 1.

The OOI L1 Core Data Product Names and Descriptive Names for the products are:

Name Descriptive Name
WINDTUR-VLN_L1 Motion-corrected northward wind speed component [m/s]
WINDTUR-VLW_L1 Motion-corrected westward wind speed component [m/s]
WINDTUR-VLU_L1 Motion-corrected upward wind speed component [m/s]
TMPATUR_L1 Sonic temperature [oC]

The OOI L2 Core Data Product Names and Descriptive Names for the products are:

Name Descriptive Name

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 2

FLUXMOM-U_L2 Along-wind component of momentum flux [m2/s2]
FLUXMOM-V_L2 Cross-wind component of momentum flux [m2/s2]
FLUXHOT_L2 Buoyancy Flux [m/s K]

Data Product Abstract (for Metadata)

This document describes how to compute the L1 and L2 data products from the raw data upon
instrument recovery.

A number of the OOI surface buoys are equipped with the Flux Direct Covariance High Power
(FDCHP). The FDCHP collects and stores the raw motion (MOTFLUX_L0), sonic anemometer
(WINDTUR_L0), and sonic temperature (TMPATUR_L0) data. The document describes how
the raw data is processed to compute the Level 1 motion-corrected wind speeds (WINDTUR-L1)
and sonic temperature (TMPATUR_L1) data. The Level 1 data is then used to compute the
Level 2 momentum flux components (FLUXMOM-U_L2 and FLUXMOM-V_L2) required to
produce the surface stress vector, and the buoyancy flux (FLUXHOT_L2).

The momentum flux is the vertical transfer of horizontal momentum from the air to the ocean and
is called the wind stress. It is the transfer of energy from the wind physically pushing against the
water. The wind stress is a vector quantity that can be defined as

where is the stress vector, is the density of air, and and are the along-wind and
cross-wind components, respectively. The vector wind in this coordinate system is given by

, where is the mean wind speed.

FLUXMOM-U: The kinematic form (Stull, 1988) of the along-wind component of momentum
flux, , is computed using the motion-corrected direct covariance (MCDC) method where
represents fluctuations in the along-wind (or streamwise) wind component and represents
fluctuations the vertical velocity component. These fluctuations are computed after removal of
the platform motion from the measured wind vector as described in section 3. The along-wind
component generally carries most of the momentum flux, i.e., it is responsible for most of the
surface stress.

FLUXMOM-V: The kinematic form of the cross-wind component of momentum flux, , is
computed using the MCDC method where represents fluctuations in the cross-wind (or lateral)
wind component. The cross-wind component is generally smaller than the along-wind
component, signifying that the wind and stress vectors are closely aligned. However, this
component can become as large as or even larger than the along-wind component near the
ocean surface in the presence of waves. It can also be large in light-wind conditions where the
wind and stress vectors are poorly defined.

FLUXHOT: The kinematic form of the buoyancy Flux, , is computed using the direct
covariance method where represents fluctuations in the virtual temperature ,
where is air temperature and is the specific humidity. The virtual temperature is defined as
and incorporates the effect of both temperature and moisture on the buoyancy of an air parcel
(i.e., its density compared to the density of the surrounding air). For example, a moist parcel of
air is less dense than a dry parcel of air at the same temperature. Such a parcel would have
positive buoyancy and would want to rise thereby transferring moisture (and latent heat) upwards.
The DCFS approximate the virtual temperature using the sonic temperature given by

. The small difference between the buoyancy flux computed using sonic

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 3

temperature can be removed by users with estimates of the moisture (or latent heat) flux from the
bulk fluxes.

Ancillary Data: The Level 0 and Level 1 data are also used to provide ancillary data that includes
the mean, standard deviation, minimum value, and maximum value of the variables from each
sensor. These are intended to provide diagnostic data to monitor system performance.

2.2.2 Computation Name
The Motion-Corrected Direct Covariance Method (MCDC)

2.2.3 Computation Abstract (for Metadata)

This DPS describes the motion-corrected direct covariance (MCDC) approach used by the
FDCHP to produce the L2 data products. The FDCHP system provides a means to directly
compute the fluxes; it makes rapid (e.g. 10 Hz) observations of turbulent three-dimensional wind
velocity () and sonic temperature () from a 3-axis sonic anemometer, where
sonic temperature is derived from the measured speed of sound. The velocity data is
contaminated by platform motion, which is removed prior to calculation of the direct covariance
fluxes. This is accomplished using a “strapped-down” system with 3-axis linear accelerometers,
3-axis angular rates sensors (gyros), and a pitch, roll and yaw magnetometer. These sensors are
used to determine the rotation matrix and the 3-axis platform velocities as described in section
3.2. The fluxes are computed from the products of motion corrected velocities , and

 to provide estimates, respectively, of the two horizontal components of wind stress and the
buoyancy flux.

2.2.4 Instrument-Specific Metadata

The height of each sensor above the nominal sea surface and the recording period (length of time
over which an observation is taken) must be recorded and kept as part of the metadata. The
latitude of the FDCHP system is required and kept as part of the metadata.

The sign convention for the instruments in the buoy reference frame is based on a right-handed
(x, y, z) coordinate system with x positive towards the buoy vane, y positive to port of the buoy
vane (i.e., to the left looking in the positive-x direction), z positive upward, roll positive for positive-
y rolled up, pitch positive for positive-x pitched down, and yaw (heading) positive for positive-z
yawed counter-clockwise. Note that the right-handed definition of yaw is opposite the typical left-
handed definition used for a compass. Also note that the x-component of the relative wind speed
is generally positive in this coordinate system as it usually blows towards the vane.

The FDCHP will provide a time stamp using its internal clock. The metadata must include the
time the internal clock was set such that drift can be easily computed in post-processing. The
FDCHP will also provide a version number of the software and a status integer.

Quality Control Variables/User Auxiliary Data
During the computations associated with the MCDC, auxiliary data products are computed, saved
and telemetered to provide quality control of the FDCHP data (for more information, see the
FDCHP Interface Document). Specifically these are:

Sonic Anemometer/Thermometer (Gill Windmaster Pro Model 1561-PK-020)
WindU: Average wind speed component along instrument x-axis [m/s]
WindV: Average wind speed component along instrument y-axis [m/s]
WindW: Average wind speed component along instrument z-axis [m/s]
Tsonic: Average sonic temperature [C]
StdU: Standard deviation of WindU [m/s]
StdV: Standard deviation of WindV [m/s]
StdW: Standard deviation of WindW [m/s]

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 4

StdTs: Standard deviation of Tsonic [C]
MaxU: Maximum of WindU [m/s]
MaxV: Maximum of WindV [m/s]
MaxW: Maximum of WindW [m/s]
MaxTs: Maximum of Tsonic [C]
MinU: Minimum of WindU [m/s]
MinV: Minimum of WindV [m/s]
MinW: Minimum WindW [m/s]
MinTs: Minimum of Tsonic [C]

Linear Accelerometers (Microstrain Model 3DM-GX3-25)
AX: Average observed acceleration along the instrument x axis [m/s2]
AY: Average observed acceleration along the instrument y axis [m/s2]
AZ: Average observed acceleration along the instrument z axis [m/s2]
AXstd: Standard deviation of AX [m/s2]
AYstd: Standard deviation of AY [m/s2]
AZstd: Standard deviation of AZ [m/s2]
AXmax: Maximum AX [m/s2]
AYmax: Maximum AY [m/s2]
AZmax: Maximum AZ [m/s2]
AXmin: Minimum AX [m/s2]
AYmin: Minimum AY [m/s2]
AZmin: Minimum AZ [m/s2]

Angular Rate Sensors (Microstrain Model 3DM-GX3-25)
RX: Average observed angular rate about the instrument x-axis [radian/sec]
RY: Average observed angular rate about the instrument y-axis [radian/sec]
RZ: Average observed angular rate about the instrument z-axis [radian/sec]
RXstd: Standard deviation of RateX [radian/sec]
RYstd: Standard deviation of RateY [radian/sec]
RZstd: Standard deviation of RateZ [radian/sec]
RXmax: Maximum RateX [radian/sec]
RYmax: Maximum RateY [radian/sec]
RZmax : Maximum RateZ [radian/sec]
RXmin : Minimum RateX [radian/sec]
RYmin: Minimum RateY [radian/sec]
RZmin: Minimum RateZ [radian/sec]

Magnetometer (Microstrain Model 3DM-GX3-25)
Heading: Average Heading [radians]
Pitch: Average Pitch [radians]
Roll: Average Roll [radians]
stdH: Standard deviation of Heading [radians]
stdP: Standard deviation of Pitch [radians]
stdR: Standard deviation of Roll [radians]
maxH: Maximum Heading [radians]
maxP: Maximum Pitch [radians]
maxR: Maximum Roll [radians]
minH: Minimum Heading [radians]
minP: Minimum Pitch [radians]
minR: Minimum Roll [radians]

Additional Motion-Corrected Data
Ucorr: Motion-corrected Northerly wind speed component [m/s]
Vcorr: Motion-corrected Westerly wind speed component [m/s]
Wcorr: Motion-corrected vertical wind speed component [m/s]

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 5

StdUcorr: Standard deviation of along-wind component [m/s]
StdVcorr: Standard deviation of cross-wind component [m/s]
StdWcorr: Standard deviation of vertical component [m/s]
WindSpeed: Motion-corrected wind speed relative to ground [m/s]
UWcorr: Along-wind momentum flux (corresponds to FLUXMOM-U_L2)
VWcorr: Cross-wind momentum flux (corresponds to FLUXMOM-V_L2)

WTcorr: Sonic temperature flux (corresponds to FLUXHOT_L2)
SigH: Significant wave height
SigCp: Significant wave period

2.2.5 Data Product Synonyms
- The momentum flux is also known as wind stress.
- The direct covariance method is also known as the eddy correlation method.
- The Flux Direct Covariance High Power (FDCHP) system was originally known as the

Direct Covariance Flux System (DCFS) as described by Edson et al. (1998).

2.2.6 Similar Data Products

The L2 BULKFLUX core data products provide estimates of the latent heat, sensible heat, and
momentum fluxes suing the bulk formulae method. The latent and sensible heat fluxes can be
combined to provide estimates of the buoyancy flux.

2.3 Instruments

For detailed information on the instruments from which the L2 FDCHP data product inputs are
obtained, see the FCDHP Processing Flow document (1342-00280) and FDCHP Interface
Document. Briefly, the system measures the horizontal and vertical wind components in the
buoy reference frame using a 3-axis Gill Windmaster Pro (Model 1561-PK-020) sonic
anemometer. The sonic anemometer also provides the speed of sound that is readily converted
into sonic temperature, which closely approximates the virtual air temperature. The platform
motion is characterized using a Microstrain (Model 3DM-GS5-25) Inertial Measurement Unit
(IMU). This device integrates 3-axis linear accelerometers, 3-axis angular rate sensors (solid
state gyros), and a 3-axis magnetometer. The data is data from the sonic anemometer and IMU
are merged, time-stamped and stored by a AA3355 1 Ghz ARM Cortex-A8 processor. The
processor collects data for 20 minutes out of the hour and processes it during the 40 minute
interval to generate the ancillary data telemetered to monitor system performance.

2.4 Literature and Reference Documents

Anctil, F., M. A. Donelan, W. M. Drennan, and H. C. Graber, 1994: Eddy-correlation

measurements of air–sea fluxes from a discus buoy. J. Atmos. Oceanic Technol., 11,
1144 –1150.

Axford, D. N., 1968: On the accuracy of wind measurements using an inertial platform in an
aircraft and an example of a measurement of the vertical mesostructure of the
atmosphere. J. Appl. Meteor., 7, 645–666.

Dugan, J. P., S. L. Panichas, and R. L. DiMarco, 1991: Decontamination of wind measurements
from buoys subject to motions in a seaway. J. Atmos. Oceanic Technol., 8, 85–95.

Edson, J.B., A. A. Hinton, K. E. Prada, J.E. Hare, and C.W. Fairall, 1998: Direct covariance flux
estimates from mobile platforms at sea, J. Atmos. Oceanic Tech., 15, 547-562

Edson, J. B., and C.W. Fairall, 1998: Similarity relationships in the marine atmospheric surface
layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 2311-2328.

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 6

Fairall, C.W., A. B. White, J. B. Edson, and J. E. Hare, 1997: Integrated shipboard measurements
of the marine boundary layer. J. Atmos. Oceanic Technol., 14, 368–379.

Fujitani, T., 1981: Direct measurement of turbulent fluxes over the sea during AMTEX. Pap.
Meteor. Geophys., 32, 119 –134.

Fujitani, T., 1985: Method of turbulent flux measurement on a ship by using a stable platform
system. Pap. Meteor. Geophys., 36, 157–170.

Goldstein, H., 1965: Classical Mechanics. Addison-Wesley, 398 pp.
Hristov, T. S., S. D. Miller, and C. A. Friehe, 2003: Dynamical coupling of wind and ocean waves

through wave-induced air flow, Nature, 422, 55-58.
Miller, S., C. Friehe, T. Hristov, and J. Edson, 2008: Platform motion effects on measurements of

turbulence and air-sea exchange over the open ocean, J. Atmos. Oceanic Tech., 25,
1683-1694.

Oost, W. A., C. W. Fairall, J. B. Edson, S. D. Smith, R. J. Anderson, J. A. B. Wills, K. B. Katsaros,
and J. DeCosmo, 1994: Flow distortion calculations and their application in HEXMAX. J.
Atmos. Oceanic Technol., 11, 366–386.

Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers,
666 pp.

Ware, J., 2014, Interface Document for the Flux Direct Covariance High Power System. (see
DPS Artifacts >> DCHPFLX >> FDCHP_Interface_Document-{revNN}.pdf)

2.5 Terminology

2.5.1 Definitions
None.

2.5.2 Acronyms, Abbreviations and Notations
General OOI acronyms, abbreviations and notations are contained in the Level 2 Reference
Module in the OOI requirements database (DOORS).

2.5.3 Variables and Symbols

Temperatures in degrees Kelvin are denoted by K and in Celsius by C, where T(K) = T(C) +
273.15 K.

3 Theory

3.1 Description
 The time-averaged flux determined using the direct covariance (or eddy correlation)
technique is regarded as the most direct estimate of the ensemble average flux. In the field, a
sonic anemometer is commonly used to provide the three velocity measurements required to
compute the vector stress

''ˆ''ˆ wviwui
a

+=
ρ
τ
!

 (1)

where aρ is the density of air; the overbar denote a time average; and 'u , 'v and 'w are the
longitudinal, lateral, and vertical velocity fluctuations about their means, respectively. In

(1), ''wu− represents the longitudinal (along-wind) component of the stress, and ''wv− is the
lateral component.

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 7

 The vertical velocity can also be correlated with scalar quantities to compute their vertical
flux. For example, investigations of air-sea investigation often need estimates of the buoyancy
flux to account for atmospheric stability,

'''' svB TwTwQ ≈= (2)

where 'vT denotes fluctuations in the virtual temperature. This temperature is closely

approximately by the sonic temperature sT provided by the speed of sound measurements from a
sonic anemometer. The buoyancy flux is used to quantify the buoyant production or consumption
of turbulent kinetic energy (TKE), and is used to define the convective velocity scale (Stull 1988).
This flux can also be combined with estimates of the surface stress to compute atmospheric
stability parameters used in Monin-Obukhov similarity theory (e.g., Edson and Fairall, 1998).
 The obvious problem that arises when estimating these fluxes from a moving platform is that
part of the fluctuating velocity is due to platform motion. This motion contamination must therefore
be removed before we can compute the fluxes. The contamination arises from three sources: 1)
instantaneous tilt of the anemometer due to the pitch, roll, and heading variations of the
platform; 2) angular velocities at the anemometer due to rotation of the platform about its local
coordinate system axes; and 3) translational velocities of the platform with respect to a fixed
frame of reference (Dugan et al. 1991; Anctil et al. 1994; Edson et al. 1998; Miller et al. 2008).

3.2 Mathematical Theory

 A variety of approaches have been used to correct wind sensors for platform motion. True
inertial navigation systems (Axford 1968) are standard for research aircraft. These systems are
expensive and subject to the so-called Schuler oscillation, so simpler techniques have been
sought for ships where the platform mean vertical velocity is unambiguously zero. The basic
approach that we are using follows that of Fujitani (1981), where the true wind vector (i.e,
uncontaminated by motion) can be written as

CMobstrue VMTVTV
!!!!!

+×Ω+= (3)

where trueV
!

is the desired wind velocity vector in the reference coordinate system, obsV
!

is the

measured wind velocity vector in the platform frame of reference, T is the coordinate
transformation matrix for a rotation of the platform frame coordinate system to the reference
coordinates, Ω

!
is the angular velocity vector of the platform coordinate system, M

!
 is the

position vector of the wind sensor with respect to the center of gravity, and CMV
!

is the
translational velocity vector at the center of motion/mass of the platform with respect to a fixed
coordinate system.

The motion measurement system is often separated from the center of motion of the platform.
As a result, an additional correction term is required to account for the angular velocities that are
sensed at that location as translational velocities by the accelerometers (Fujitani 1985). This term
is incorporated in (3) as

motobstrue VSMTVTV
!!!!!!

+−×Ω+=)((4)

where S

!
 is the vector distance from the motion system to the center of motion of the platform

and motV
!

now includes the additional translational velocities. Fortunately, SM
!!

− is just the
position vector of the wind sensor with respect to the motion package. Therefore, one does not
need to know the exact location of the center of motion, which is often difficult to identify, just
the distance between the motion sensors and the sampling volume of the sonic anemometer.

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 8

3.2.1 Angles and angular rates

 To use (4), we need three angular variables describing the platform’s orientation in the fixed
frame and the angular velocity vector describing the time rate of change of its orientation.
Several different angular coordinate systems are available (Goldstein 1965), but roll φ, pitch θ,
and yaw ψ are most often used because they are the variables output from doubly gimbaled
gyro-stabilized systems commonly used on research vessels (e.g., the gyro-compass often
located on the bridge). Such gyro-stabilized systems provide the user with pitch, roll, and yaw
angles that describe the ship’s orientation in the fixed frame. These angles can be used directly
in the total rotational coordinate transformation matrix that we define as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−+

++−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

=

)cos()cos()sin()cos()sin(
)sin()cos()cos()sin()sin()sin()sin()sin()cos()cos()cos()sin(
)cos()sin()cos()sin()sin()sin()sin()cos()cos()sin()cos()cos(

)cos()sin(0
)sin()cos(0

001

)cos(0)sin(
010
)sin(0)cos(

100
0)cos()sin(
0)sin()cos(
)()()(),,(

φθφθθ

φψφθψφθψφψθψ

φθψφψφθψφψθψ

φφ

φφ

θθ

θθ

ψψ

ψψ

φθψψθφ AAAT

 (5)

where the sign convention where the sign convention here is based on a righthanded (x, y, z)
coordinate system with x positive forward (to bow), y positive to port, z positive upward, ψ
positive for the ship’s bow yawed counter-clockwise from north, φ positive for the port side rolled
up, and θ positive for the bow pitched down. Note that the right-handed definition of ψ is
opposite the typical left-handed definition used for a compass. However, the incorporation of a
compass in (5) simply requires multiplication of the compass heading by -1.
 Equation (5) represents the coordinate system transform for a combination of the three
separate rotations of the platform coordinate frame about the three axes of our frame of
reference (i.e., the earth). Note that this total coordinate transformation matrix is dependent on
the order of the three separate rotations. However, for small roll and pitch angles, such as those
encountered on a large research vessel or discus buoy in the ocean environment (perhaps
±15°), the error due to the order of rotation is negligible. Additionally, the errors associated with
the order of rotation are minimized by the 3, 2, 1 rotation used in (5).

3.2.2 The FDCHP Strapped-Down System

 In contrast to a gyro-stabilized system, the FDCHP uses a “strapped-down” approach where
the motion sensors are firmly attached to the buoy frame. The angular rate sensors used in
this system directly measures the rate of angular rotation about the three axes in the buoy
frame. In such systems, the angular rate vector is given by

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=Ω

obs

obs

obs

obs

ψ

θ

φ

!

!
!

 (6)

where the subscript obs denotes measurements made in the buoy frame of reference. We
remind the reader that the yaw rate is defined positive for a left-handed rotation. This vector

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 9

can be related to the fixed frame angular rate through obsTΩ=Ω
!!

. This relationship allows one
to rewrite (4) using our direct measurements of angular rate in the buoy frame as

motobsobstrue VRVTV
!!!!!

+×Ω+=)((7)

where R

!
 is the position vector of the wind sensor with respect to the motion package.

 The difficulty then is to approximate the Euler angles (φ, θ, ψ) from the strapped-down
angular rate sensors. The general approach is to use obsTΩ=Ω

!!
with (5) to obtain an

expression for the time derivative of these angles in terms of the measured angular rates
given by

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−

++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)cos(/)]sin()cos([
)sin()cos(

)tan()]sin()cos([

θφθφψ

φψφθ

θφθφψφ

ψ

θ

φ

obsobs

obsobs

obsobsobs

!!
!!
!!!

!

!
!

 (8)

The angles can then be approximated by integrating (8) and updating this matrix with
successive approximation of φ , θ and ψ (Fairall et al. 1997).

3.2.3 Complementary filtering

 In practice, problems often arise with this approach due to the drift found in angular rate
sensors. Therefore, in the approach used by the FDCHP, the angles are found by high-pass
filtering the angles that are computed by integration of (8) and then adding these results to low-
pass filtered reference angles using an approach known as complimentary filtering. These
complimentary-filtered angles provide an estimate of φ and θ, which are used in the update
matrix to provide better approximation of the Euler angles through subsequent iteration and
integration.
 The reference angles used in the FDCHP approach are found from the measured
accelerations in the buoy frame of reference. In this frame of reference, the measured
accelerometer output is a combination of the gravitational component due to the pitching and
rolling of the buoy (i.e., due to tilting of the system) plus the accelerations arising from the motion
of the buoy along the accelerometer axes

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)cos()cos(
)cos()sin(

)sin(

θφ

θφ

θ

g
g

g

z
y
x

z
y
x

obs

obs

obs

!!

!!
!!

!!

!!
!!

 (9)

where the double dots denote second derivatives of the position vector zkyjxiX ˆˆˆ ++=
!

, and g
is the gravitational acceleration. The second term on the right-hand side of (9) represents the tilt-
induced acceleration. These tilt-induced accelerations will eventually have to be removed before
we integrate our accelerometers to compute the buoy velocities as described in section 3.
However, we can use these measured accelerations and angular rates to approximate the
desired angles using complementary filtering.
 The original DCFS system described in Edson et al. (1998) used true complementary filter
with simply first-order Butterworth filters. This approach is easily illustrated using Laplace
transform notation where, e.g., the roll is approximated by

obs
obs

s
s

g
y

s
φ

τ
τ

τ
φ

11
1

+
+

+
≈

!!
 (10)

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 10

where s represents the differentiation operator such that obsobs sφφ =! , and τ is a time constant,

and we have assumed that the tilts are small, i.e., φθφ gg ≈)cos()sin(. The first term on the
right-hand side is the low-frequency tilt reference from the accelerometers as follows from (9).
The second term on the right-hand side represents a high-pass filter [i.e., τ s/(τ s + 1)] that
integrates the angular rate sensors to provide the wave-induced angular motions. By filtering the
signals in this way we do not introduce any time delays, that is, the process is an all-pass filter
that removes the unwanted drift in the rate gyros while retaining the low-frequency tilt reference.
 However, the first-order filter used in the original implementation allows significant leakage of
the integrated angular rate component beyond the cutoff frequency. This generates noise due to
integration of angular rate sensors that are often characterized by significant drift at low-
frequencies. Therefore, the most recent method used to estimate the Euler angles uses a fourth-
order Butterworth filter, which effectively removes the adverse effects of leakage into the lowest
frequencies. The fourth-order filters are not integrating complimentary filters and will distort the
phase. Instead, the angular rates are numerically integrated and the 4th-order high-pass filter is
applied forward and then backward to the integrated time series to remove the phase shift (Miller
et al. 2008). This time series is then added to the forward and backward low-pass filtered tilts
from the accelerometers. This procedure can be summarized as:

()obs
obsobs HP
g
yHP

g
y

φφ +⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈

!!!!
 (11)

where HP represents a high-pass filter operator applied in the forward and backward direction,
and is numerically integrated prior to filtering using the trapezoidal formula. The bracketed term
provides the low-pass filtered tilts from the accelerometers.

3.2.4 Platform Motion

 The Euler angle estimates are then used to define the transformation matrix,),,(ψθφT , that

is used to compute the platform velocities motV
!

. The platform velocity is defined as

hplpmot VVV
!!!

+= (12)

where we have divided the velocities into low-pass (lp) and high-pass (hp) components. The high-
pass platform velocities are computed by rotating the strapped down accelerations into the fixed
frame using the transformation matrix, subtracting the gravity vector, integrating the remainder,
and then high-pass filtering the resultant velocities,

])([∫ += dtgxTHPV obshp
!!

""
!

 (13)

where gkg ˆ−=! and g is the gravitational acceleration.
 This high-pass component of the platform velocity provides an estimate of the true wind
velocity relative to the buoy:

hpobsobs
buoy
true VRVTV

!!!!!
+×Ω+=)((14)

The low-pass components are computed only for the horizontal velocities (i.e., we assume the
buoy does not leave the ocean surface) using a GPS to measure the buoy speed relative to Earth
or a current meter to measure the buoy speed relative to water. The combination of the high-pass
and low-pass signals results in a value of motV

!
that describes the mean velocity relative to the

frame of reference plus the fluctuating velocity components computed from our accelerometers.
For example, the relative velocity components obtained from the current meters are rotated to

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 11

give the north and west components. When these are added from the north and west
components of the true wind speed relative to the buoy, we obtain the wind velocity relative to the
water:

0VVV buoy
true

water
true

!!!
+= (15)

where 0V
!

is the buoy velocity relative to water. Obviously, in the absence of a current meter,
the velocities are measured relative to Earth.

3.3 Known Theoretical Limitations
 The velocity measurements made on a surface buoy differ from those made on a fixed
platform. The buoy measurements are essentially made in a wave-following coordinate system
while the tower measurements are made relative to earth. This causes uncertainty on how to
interpret fluxes made in either coordinate system. For example, measurements from fixed
platforms (e.g., Hristov et al. 2001) show clear wave-induced fluctuations in the measured
velocities. The correlation between these fluctuations is associated with a wave-induced
component of the momentum flux at the height of measurement. However, the (quasi-potential)
flow is expected to follow the long waves upon which a buoy rides. Therefore, one would expect
to see less wave-induced fluctuations measured by an anemometer in a wave-following
coordinate system. The same correlation associated with the wave-induced momentum flux is
still expected because these are mainly a result of the non-potential (rotational) component of the
flow. However, there remains some uncertainty as to how to remove the wave-induced platform
motion in this coordinate system. For example, if the anemometer is generally in a coordinate
system following the flow, then “removing” the low frequency platform velocities that are not
actually part of the measured wind velocities may be adding noise. Research to date has shown
that this is mainly a problem in light winds over swell, i.e., old seas.

One simple solution is to move the cutoff frequency to a higher value, which effectively removes
the low-frequency platform velocities that are not actually present in the measured wind
velocities. This requires a means to dynamically choose the value of the cutoff frequency based
on, e.g., wave age or wave slope. This approach is an area of active research and we expect
such a capability in future revisions. It should be noted that the initial version of the code sets
the cutoff frequency to 1/(12 seconds), such that it is generally at a slightly lower frequency than
the dominant waves.

3.4 Revision History
No revisions to date.

4 Implementation

4.1 Overview
The current implementation of the FDCHP collects all of the data required by (14) to compute the
true wind speed relative to the buoy for 20 minutes out of every hour. The sonic anemometer and
IMU data is merged, time-stamped using the processor’s internal clock and stored as the level 0
products WINDTUR_L0, TMPATUR_L0 and MOTFLUX_L0. The processor will compute
ancillary data that will be telemetered to shore to monitor system performance. However, DPAs
are not required for this data.

Once recovered, the time series are processed using DPAs that carry out the above steps to
compute the motion-corrected time series of wind speed WINDTUR_L1 and TMPATUR_L1.
Thirty seconds of data from the beginning and end of the 20 minute time series are discarded to
remove the edge effect of the filters using in the routines. The remaining 19 minutes of true wind
velocities are rotated into the longitudinal (streamwise) wind. This rotation forces the mean
cross-wind and vertical components of the wind to zero and has been shown to reduce the

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 12

effect of flow distortion on the fluxes (Oost et al. 1994). The rotated velocities and sonic
temperature are then linearly detrended by removing a least-squares-fit to the time series,
which provides fluctuations about removed trend. The kinematic components of the buoyancy,

along-wind, and cross-wind momentum fluxes, i.e., '' sTw , ''wu and ''wv , respectively, are
then computed to provide estimates of (1) and (2). The inclusion of the surface currents
required to compute the fluxes relative to water using (15) as well as the small correction to
account for the use of sonic temperature (i.e., rather than virtual temperature) would be carried
out in post-processing.

4.2 Inputs

The inputs for the Data Processing Algorithms (DPAs) are the measured time series from the
sonic anemometer/thermometer and IMU, which are sampled at 10 Hz. Specifically, these are:

- The Level 0 Data Product WINDTUR_L0, which is the wind speed components [i.e.,
U(t), V(t), and W(t)] measured in the buoy frame of reference by the sonic anemometer;

- The Level 0 Data Product TMPATUR_L0, which is the speed of sound [i.e., Cs(t)]
measured by the sonic anemometer;

- The Level 0 Data Product MOTFLUX_L0, which is:
o the horizontal and vertical linear accelerations [i.e.,)(tx!! ,)(ty!! and)(tz!!]

measured in the buoy frame of reference by the IMU accelerometers;
o the roll, pitch and yaw rates [i.e.,)(tφ! ,)(tθ! and)(tψ!] measured in the buoy

frame of reference measured by the IMU gyros; and
o the roll, pitch and yaw [i.e.,)(tφ ,)(tθ and)(tψ] measured in the buoy frame

of reference measured by the IMU magnetometer.

The raw 10-Hz input data (i.e., MOTFLUX_L0, TMPATUR_L0, and WINDTUR_L0 data products)
are stored on board the buoy in the processors non-volatile system memory, such that all of the
data required to reprocess the data will be available on recovery. These variables are stored in
the units outputted from the sonic anemometer/thermometer and IMU. These units and the
factory calibration required to convert them to physical units is summarized in Table 1.

Table 1. Units of stored Level 0 data products and factory calibrations to convert to physical
units.

Device

Variable(s)

Symbol

Stored Units

Factory Calibration
Physical Units

Gain Offset

Sonic Anemometer

Velocity
Components

U,V,W

Counts

0.01

0

m/s

Sonic Anemometer

Speed of Sound
Cs

Counts

0.01

0

m/s

Accelerometers

Linear
Accelerations

x!! , y!! , z!!

Decimal Counts

1

0

m/s2

Angular Rate

Sensors

Angular Rates
φ! ,θ! ,ψ!

Decimal Counts

1

0

radians/s

Magnetometer

Angles
φ ,θ ,ψ

Decimal Counts

1

0

radians

The speed of sound is converted to sonic temperature using the following equation

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 13

KCCT s
s 15.273

403
][

2

−=° (16)

The factory calibrated velocity, sonic temperature and motion data are the inputs to the motion
correction DPA shown in the FCDHP Processing Flow document (1342-00280).

4.3 Processing Flow

Data Product Algorithms (DPAs) will process the Level 0 data upon recovery to compute the
Level 1 data products WINDTUR_L1 and TMPATUR_L1, which are time series of the motion-
corrected wind velocity and sonic temperature, respectively. The Level 1 products are then used
to produce the Level 2 data products FLUXMOM-U_L2, FLUXMOM-V_L2, and FLUXHOT_L2,
which are the along-wind momentum, cross-wind momentum and buoyancy fluxes, respectively.

The specific steps necessary to create the FCDHP Level 1 and 2 data products are shown in the
FCDHP Processing Flow document (1342-00280) and can be summarized as:

1. FDCHP Dataset Agent Driver reads in WINDTUR_L0, TMPATUR_L0, and
MOTFLUX_L0 from recovered data and passes them to the DPA (see Appendix A-1 for
example code).

2. The factory calibrations and (16) are applied to convert data to physical units as
summarized in Table 1.

3. Secondary post-deployment calibrations are read in and applied as necessary.
4. Despiking and additional automated quality control (QC) is applied to the time series.
5. The calibrated and automated QC data quality are passed to the motion correction DPA:

a. The Euler angles are approximated using (11).
b. These angles are used to update the angular rates using (8) with successive

approximation of φ , θ and ψ using (11). This is repeated 5 times.
c. The Euler angles are used to rotate the measured accelerations into the vertical

using the transformation matrix given by (5).
d. The gravity vector is removed and the accelerations are integrated and filtered

using (13) to compute the platform velocity, hpV
!

.

e. The measured wind velocities, obsV
!

, are added to the measured angular

velocity, Robs

!!
×Ω .

f. Their sum is transformed into the vertical and added to the platform velocity to
produce the wind velocities relative to Earth, buoy

trueV
!

, as shown by (14).

6. The first and last 30 seconds of buoy
trueV
!

are removed to produce WINDTUR_L1, which
contains 3 element time series of the wind components relative to Earth. The right-
handed orientation of the wind components are:

WINDTUR-VLN_L1 is positive to the North,
WINDTUR-VLW_L1 is positive to the West
WINDTUR-VLU_L1 is positive upward

7. The velocity components in WINDTUR_L1 are rotated into the longitudinal

(streamwise) wind.
8. The first and last 30 seconds of the sonic temperature are removed to match the velocity

time series.
9. The rotated velocities and sonic temperature are linearly detrended to provide the

velocity and temperature fluctuations ',',' wvu and 'sT .

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 14

10. The vertical velocity fluctuations are correlated with the temperature and horizontal

velocity fluctuations to compute the kinematic form of the buoyancy flux, '' sTw , along-

wind momentum flux, ''wu , and cross-wind momentum flux, ''wv .
11. These provide the Level 2 fluxes computed over 19 minute averaging periods:

a. FLUXHOT_L2 = '' sTw

b. FLUXMOM-U_L2 = ''wu

c. FLUXMOM-V_L2 = ''wv .

Note: The wind speeds relative to earth and water are require to compute the fluxes relative to
water. Bulk estimates of the latent heat flux are required to provide the small correction

needed to convert '' sTw to '' vTw . Additionally, bulk estimates of the air density, ρ, and
specific heat at constant pressure, cp, are required to convert the kinematic values into the
momentum and heat fluxes with units of N/m2 and W/m2, respectively.

4.4 Outputs

4.4.1 The following L1 Products are output
WINDTUR_L1: 3-element 19 minute time series of motion-corrected velocity vector relative to
Earth where the orientation of the wind components are:

WINDTUR-VLN is positive to the North [m/s]

WINDTUR-VLW is positive to the West [m/s]

WINDTUR-VLU is positive upward [m/s]

TMPATUR: Time series of sonic temperature in °C.

4.4.2 The following L2 Products are output:

FLUXMOM-U: ''wu Along-wind component of momentum flux [m2/s2] relative to Earth

FLUXMOM-V: ''wv Cross-wind component of momentum flux [m2/s2] relative to Earth

FLUXHOT: '' sTw Buoyancy Flux [m/s °K]

4.5 Computational and Numerical Considerations

4.5.1 Numerical Programming Considerations
There are no numerical programming considerations for this computation. No special numerical
methods are used.

4.5.2 Computational Requirements
N/A

4.6 Code Verification and Test Data Set
The example input and output data are accessible through the following path:
https://alfresco.oceanobservatories.org/ and navigate to OOI >> REFERENCE >>
Data Product Specification Artifacts >> 1341-00280_FDCHP

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 15

Appendix A Example C and Matlab processing code (UConn/WHOI)
The MATLAB® code used to process the input data has been converted to an executable file to
run on the buoy processor using MATLAB’s Coder®. This required conversion of the MATLAB®
processing code and the intrinsic functions it calls to C++ files. Only a subset of intrinsic
functions is available with Coder®. Those functions that were not available (e.g., the MATLAB ®
filtfilt and medfilt1 functions) have been created as functions within the processing code.

The processing code and any intrinsic functions that had to be written are given by:

function [fluxes] = ProcessDCFS03(rawdata,lat);

Ts1 = 10/100; % Sampling period for DCFS
fs = 1/Ts1; % Sampling frequency for R2
dt=1/fs;
tc1=12; %Define constants for filters
tc2=tc1;
fc1=1/tc1;
fc2=1/tc2;
fcwaves=1/40;
rad2deg=180.0/pi;
G=9.80665;

% JBE 06/29 JW 07/18
version_number=1.3;
status_val = uint32(1);

%JBE Redefine files for 10 Hz and tc1=12
ahi=[1,-3.869797539975553,5.617802044587563,-3.625896801659080,0.877898078061700];
bhi=[0.936962154017744,-3.747848616070974,5.621772924106461,-
3.747848616070974,0.936962154017744];

gv=grv(lat);
Rvec=zeros(1,3); %Distance vector
Rvec(3)=0.753; %Vertical separation
roffset=0; %Maybe non-zero for post-calibration
poffset=0;

L=12000; %Fix length
%L=length(rawdata);

dcfsdata=zeros(15,L);

dcfsdata(1,1:L) =
datenum(rawdata(1,1:L),rawdata(2,1:L),rawdata(3,1:L),rawdata(4,1:L),rawdata(5,1:L),rawdata(6,1:L));
%UNITS#3 Velocities are m/s
dcfsdata(2,1:L) = 0.01 * rawdata(8,1:L); %wind x
dcfsdata(3,1:L) = 0.01 * rawdata(9,1:L); %wind y
dcfsdata(4,1:L) = 0.01 * rawdata(10,1:L); %wind z
dcfsdata(5,1:L) = 0.01 * rawdata(11,1:L); %Speed of sound
% Convert Sonic Speed of Sound to temperature
dcfsdata(5,1:L) = dcfsdata(5,1:L).* dcfsdata(5,1:L)/403 – 273.15;
%UNITS#4 - Rates are in radians/s, accels are in G=9.80665 m/s^2, pitch,roll and yaw are in radians.
dcfsdata(6,1:L) = rawdata(20,1:L); %heading
dcfsdata(7,1:L) = rawdata(18,1:L); %roll
dcfsdata(8,1:L) = rawdata(19,1:L); %pitch
dcfsdata(9,1:L) = rawdata(12,1:L); %rate x
dcfsdata(10,1:L) = rawdata(13,1:L); %rate y
dcfsdata(11,1:L) = rawdata(14,1:L); %rate z
%JBE The temperature is no longer output from IMU - Use this as counter

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 16

dcfsdata(12,1:L) = 1:L'; % counter
dcfsdata(13,1:L) = rawdata(15,1:L); % accel x
dcfsdata(14,1:L) = rawdata(16,1:L); % accel y
dcfsdata(15,1:L) = rawdata(17,1:L); % accel z
disp(mean(rawdata(17,1:L)));
disp(datestr(dcfsdata(1,1)));

% Convert IMU from North East Down (right-handed z-down) coordinate system
% to North West Up (right-handed z-up) coordinate system to match Sonic

dcfsdata(8,1:L) = -1.0*dcfsdata(8,1:L); %y pitch
dcfsdata(6,1:L) = -1.0*dcfsdata(6,1:L); %z heading(yaw)
dcfsdata(10,1:L) = -1.0*dcfsdata(10,1:L); %rate y
dcfsdata(11,1:L) = -1.0*dcfsdata(11,1:L); %rate z
dcfsdata(14,1:L) = -1.0*dcfsdata(14,1:L); %accel y
dcfsdata(15,1:L) = -1.0*dcfsdata(15,1:L); %accelz

sonics=zeros(3,L);
Tv=zeros(1,L);
compass=zeros(1,L);
roll=zeros(1,L);
pitch=zeros(1,L);
platform=zeros(3,L);
deg_rate=zeros(3,L);

counter=dcfsdata(12,1:L);

%**
% Sonic mean, max, min, std of velocities
%**
sonics(1:3,1:L)=dcfsdata(2:4,1:L);
rdir=atan2(mean(sonics(2,1:L)),mean(sonics(1,1:L)));

%**
% Sonic mean, max, min, std of temperature
%**
Tv=dcfsdata(5,1:L);

%**
% Prep Compasss
%**
% Fill in bad points first units and signs
% UNITS#5-Roll, pitch and yaw are in radians
compass=dcfsdata(6,1:L);
roll=dcfsdata(7,1:L);
pitch=dcfsdata(8,1:L);
compass(1:10)=compass(11); %first few points are often bad
compass(L-9:L)=compass(L-10); %last few points are often bad

%**
% UNITS#6 Calc compstd,compmin and compmax in radians
%**

gx=cos(compass);
gy=sin(compass);
compcos = mean(gx);
compsin = mean(gy);
compavg = atan2(compsin,compcos);

%JBE Leave this in case we add or subtract when post-calibrating

if (compavg < 0)

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 17

 compavg=compavg + 2.0*pi;
elseif (compavg >= 2*pi)
 compavg=compavg -2.0*pi;
end

[gx] = despikesimple(gx);
[gy] = despikesimple(gy);
gsmooth=atan2(gy,gx);
i=find(gsmooth<0);
gsmooth(i)=gsmooth(i)+2*pi;
gyro=gsmooth;

gchk=unwrap(gyro);
stdhdg=std(gchk);
hdgrange=max(gchk)-min(gchk);
if (hdgrange>(120/180*pi) | stdhdg>(45/180*pi))
 goodcompass=0;
else
 goodcompass=1;
end
disp(goodcompass)
%**
% Angular rate mean, max, min and std
% UNITS#9 Rates are in radian/sec
%**
deg_rate = dcfsdata(9:11,1:L);
[deg_rate] = despikesimple(deg_rate);

%**
% Accelerometer mean, max, min and std
% UNITS#8 convert platform accels to m/s^2
%**
platform = dcfsdata(13:15,1:L)*G;
[platform] = despikesimple(platform);
gcomp=zeros(1,3);
gcomp(1)=mean(platform(1,1:L));
gcomp(2)=mean(platform(2,1:L));
gcomp(3)=mean(platform(3,1:L));

g=sqrt(sum(gcomp.*gcomp));
platform=platform*gv/g;
platform(1,:)=platform(1,1:L)+poffset;
platform(2,:)=platform(2,1:L)+roffset;

gcomp(1)=mean(platform(1,1:L));
gcomp(2)=mean(platform(2,1:L));
gcomp(3)=mean(platform(3,1:L));
g=sqrt(sum(gcomp.*gcomp));
platform=platform*gv/g;

%***
% Compute Angles and Accelerations
%***
its=5;
[euler,dr] = anglesclimodeyaw(ahi,bhi,fs,platform,deg_rate,gyro,its,goodcompass,L); % euler angles are
right-handed
[acc, uvwplat, nope] = accelsclimode(bhi,ahi,fs,platform,euler,L);
[uvw,uvwr,uvwrot] = sonic(sonics,dr,euler,uvwplat,Rvec,L);

edge = fix(1 * 30 * fs);
tot=length(uvw)-edge*2;
incr1=1+edge;

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 18

incr2=incr1+tot-1;
incr=incr1:incr2;

UVWraw=sonics(1:3,incr);
UVW=uvw(1:3,incr); %These is L1
Ts=Tv(incr); %This is L1

[u, alpha, beta] = alignwind(UVW);

%**
% Fluxes are computed relative to Earth
%**
wspd=mean(u(1,1:tot));
u=u';
uh=sqrt(u(1:tot,1).*u(1:tot,1)+u(1:tot,2).*u(1:tot,2));
u=detrend(u);
Ts=detrend(Ts');
fluxes=zeros(1,3);
uwavg=mean(u(1:tot,3).*u(1:tot,1));
vwavg=mean(u(1:tot,3).*u(1:tot,2));
wTavg=mean(u(1:tot,3).*Ts);

fluxes(1) =uwavg; %These are L2
fluxes(2)=vwavg;
fluxes(3)=wTavg;

end

% ***
% Function calls
% ***

function [euler, dr] = anglesclimodeyaw(ahi,bhi,sf,accm,ratem,gyro,its,goodcompass,L)
%# codegen
% Function from EDDYCORR toolbox
%
% Sept 2000 Replaced integrations with cumtrapz function
%
% May 16 1997 - modified to remove the first estimate of the euler
% angles in the nonlinear euler angle update matrix, F^-1 matrix
% is approximated by the identity matrix. still uses trapezoidal
% intetgration
%
% INPUT
%
% ahi,bhi - filter coefficients
% sf - sampling frequency
% accm - (3xN) array of recalibrated linear accelerations,accx,accy,accz
% ratem - (3XN) array of recalibrated angular rates, ratex, ratey, ratez
% gyro - (1XN) array of gyro signal
% its - number of interations
%
% OUTPUT
%
% euler - (3XN) array of the euler angles (phi, theta, psi) in radians.
%
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
% THE ANGLES ARE ESTIMATED FROM
%
% angle = slow_angle (from accelerometers) + fast_angle (integrated rate sensors)
%

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 19

% CALCULATE GRAVITY

gravxyz=zeros(1,3);
gravxyz(1) = mean(accm(1,1:L));
gravxyz(2) = mean(accm(2,1:L));
gravxyz(3) = mean(accm(3,1:L));
gravity = sqrt(sum(gravxyz.^2));

% Unwrap compass
gyro = unwrap(gyro);

% REMOVE MEAN FROM RATE SENSORS

ratem = detrend(ratem')';

% LOW FREQUENCY ANGLES FROM ACCELEROMETERS AND GYRO
% SLOW ROLL FROM GRAVITY EFFECTS ON HORIZONTAL ACCELERATIONS. LOW PASS
% FILTER SINCE HIGH FREQUENCY HORIZONTAL ACCELERATIONS MAY BE 'REAL'
%
% PITCH
accm1grav = -accm(1,1:L)./gravity; %Small angle approx
accm1grav = min(accm1grav,1);
accm1grav = max(accm1grav,-1);
theta = asin(accm1grav);

thetaslow = theta - filtfilter(bhi,ahi,theta);

% ROLL
accm2grav = accm(2,1:L)./gravity; %Small angle approx
accm2grav = accm2grav./cos(thetaslow);
accm2grav = min(accm2grav,1);
accm2grav = max(accm2grav,-1);
phi=asin(accm2grav);

phislow = phi - filtfilter(bhi,ahi,phi);

% YAW
% HERE, WE ESTIMATE THE SLOW HEADING. THE 'FAST HEADING' IS NOT NEEDED
% FOR THE EULER ANGLE UPDATE MATRIX. THE NEGATIVE SIGN PUTS THE GYRO
% SIGNAL INTO A RIGHT HANDED SYSTEM.
% IF THE COMPASS HAS ISSUES, WE EXTEND THE FILTER
% SO THE INTEGRATED YAW GOES OUT TO LOW FREQUENCIES
fc=1/240;
ahi2=[1,-3.993489157035384,5.980488658273062,-3.980509805074932,0.993510303875667];
bhi2=[0.996749870266190,-3.986999481064761,5.980499221597142,-
3.986999481064761,0.996749870266190];
if goodcompass
 psislow = -gyro - filtfilter(bhi2,ahi2,-gyro);
else
 psislow = -median(gyro)*ones(size(phi));
end

% USE SLOW ANGLES AS FIRST GUESS
euler = [phislow; thetaslow; psislow];
rates = update(ratem,euler,L);

% INTEGRATE AND FILTER ANGLE RATES, AND ADD TO SLOW ANGLES

for i = 1:its
 phi_int = 1/sf*cumtrapz(rates(1,1:L));
 phi = phislow + filtfilter(bhi,ahi,phi_int);
 theta_int = 1/sf*cumtrapz(rates(2,1:L));

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 20

 theta = thetaslow + filtfilter(bhi,ahi,theta_int);
 psi_int = 1/sf*cumtrapz(rates(3,1:L));

 if goodcompass
 psi = psislow + filtfilter(bhi2,ahi2,psi_int);
 else
 psi = psislow + psi_int;
 end
 euler = [phi; theta; psi];
 rates = update(ratem,euler,L);
 rates(1:2,1:L) = detrend(rates(1:2,1:L)','constant')';
 rates(3,1:L) = detrend(rates(3,1:L)','constant')';
end

dr = ratem;
end

function [Y] = despikesimple(Y);
%Remove Outliers

[col, N]=size(Y);
t=1:N;
for iter=1:3 %Do it threetime
 for tot=1:col
 M=median(Y(tot,1:N));
 S=std(Y(tot,1:N));
 j=find(Y(tot,1:N)<M+4*S & Y(tot,1:N)>M-4*S);
 Y(tot,1:N)=interp1(t(j),Y(tot,j),t,'nearest');
 end
end

end

function [acc,uvwplat,xyzplat] = accelsclimode(bhi,ahi,sf,accm,euler,L)
%#codegen
% Function from EDDYCORR toolbox
%
% 2008 Allows filter to have different cutoff from angular filter
%
% Sept 2000 Replaced integrations with cumtrapz function
%
% Mar 3 1998 Redesigned the high pass filter (see below).
%
% Revised: June 10, 1997 - high pass filter with higher cutoff
% frequency than previous version
%
% Integrate linear accelerations to get platform velocity
% and displacement. After each integration, signals are
% high pass filtered to remove low frequency effects.
%
% INPUT
%
% bhigh,ahigh - high pass filter coefficients
% sf - sampling frequency
% accm - calibrated linear accelerations (output from recal.m)
% euler - (3xN) Euler angles phi,theta,psi
%
% OUTPUT:
%
% acc - (3XN) linear accelerations in FLIP/Earth reference
% uvwplat - (3XN) linear velocities at the point of motion measurement
% xyzplat - (3XN) platform displacements from mean position

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 21

% DEFINE ARRAY SIZES UP FRONT

gravxyz=zeros(1,3);
gravxyz(1) = mean(accm(1,1:L));
gravxyz(2) = mean(accm(2,1:L));
gravxyz(3) = mean(accm(3,1:L));
gravity = sqrt(sum(gravxyz.^2));

acc = trans(accm,euler,0,L); % first rotate
acc(3,1:L) = acc(3,1:L) - gravity; % remove gravity

% INTEGRATE ACCELERATIONS TO GET PLATFORM VELOCITIES

uvwplat = zeros(size(accm));
for i=1:3
 uvwplat(i,1:L) = cumtrapz(acc(i,1:L))/sf;
 uvwplat(i,1:L) = filtfilter(bhi,ahi,uvwplat(i,1:L));
end

% INTEGRATE AGAIN TO GET DISPLACEMENTS

xyzplat = zeros(size(accm));
for i=1:3
 xyzplat(i,1:L) = cumtrapz(uvwplat(i,1:L))/sf;
 xyzplat(i,1:L) = filtfilter(bhi,ahi,xyzplat(i,1:L));
end
end

function [uvw,uvwr,uvwrot] = sonic(sonics,omegam,euler,uvwplat,R,L)
%#codegen
% Function from EDDYCORR toolbox
%
% CORRECT SONIC ANEMOMETER COMPONENTS FOR PLATFORM MOTION AND ORIENTATION.
%
% INPUTS:
%
% Sonics - row of integers corre to sonic numbers which are to be
% corrected
% omegam - (3XN) measured angular rate 'vector' in platform frame
% euler - (3XN) array of euler angles (phi, theta, psi)
% uvwplat - (3XN) array of platform velocities (output from accels_.m)
%
% OUTPUTS:
%
% uvw - (MXN) array of corrected sonic anemometer components, in the
% fixed earth reference frame (North-West-up)
%
% CALCULATE WINDS IN EARTH BASED FRAME. THE ANGULAR VELOCITY IS CALCULATED AS
% THE CROSS PRODUCT BETWEEN THE ANGULAR RATE VECTOR AND POSITION VECTOR.THE
% MEASURED AND ANGULAR VELOCITIES ARE IN THE PLATFORM FRAME AND MUST BE
% ROTATED INTO THE EARTH FRAME. THE PLATFORM VELOCITY IS ALREADY IN THE EARTH
% FRAME (FROM ACCELS.M), SO HERE THEY CAN JUST BE ADDED.
%
% UVW = MEASURED VELOCITY + ANGULAR RATE INDUCED VELOCITIES +
% INTEGRATED ACCELEROMETERS

Rvec = [R(1); R(2); R(3)] * ones(1,L);
uvwrot = cross(omegam,Rvec);

uvw = trans(sonics + uvwrot,euler,0,L) + uvwplat;
uvwr = trans(sonics + uvwrot,euler,0,L);

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 22

end

function OUT = trans(IN,ANGLES,IFLAG,L)

if nargin==2
 IFLAG=0;
 L=12000;
end

sinp = zeros(1,L);
cosp = zeros(1,L);
sint = zeros(1,L);
cost = zeros(1,L);
sinps = zeros(1,L);
cosps = zeros(1,L);

sinp = sin(ANGLES(1,1:L));
cosp = cos(ANGLES(1,1:L));
sint = sin(ANGLES(2,1:L));
cost = cos(ANGLES(2,1:L));
sinps = sin(ANGLES(3,1:L));
cosps = cos(ANGLES(3,1:L));

up = IN(1,1:L);
vp = IN(2,1:L);
wp = IN(3,1:L);

if IFLAG % =1, from xyz to x'y'z'

 u = up.*cost.*cosps + vp.*cost.*sinps - wp.*sint;
 v = up.*(sinp.*sint.*cosps-cosp.*sinps) + vp.*(sinp.*sint.*sinps+cosp.*cosps) + wp.*(cost.*sinp);
 w = up.*(cosp.*sint.*cosps+sinp.*sinps) + vp.*(cosp.*sint.*sinps-sinp.*cosps) + wp.*(cost.*cosp);

else % =0, from x'y'z' to xyz

 u = up.*cost.*cosps + vp.*(sinp.*sint.*cosps-cosp.*sinps) + wp.*(cosp.*sint.*cosps+sinp.*sinps);
 v = up.*cost.*sinps + vp.*(sinp.*sint.*sinps+cosp.*cosps) + wp.*(cosp.*sint.*sinps-sinp.*cosps);
 w = up.*(-sint) + vp.*(cost.*sinp) + wp.*(cost.*cosp);

end;

OUT = [u;v;w];
end

function OUT = update(IN,ANGLES,L)
% Function from EDDYCORR toolbox
%
% This function computes the angular update matrix
% as described in Edson et al. (1998) and Thwaites
% (1995) page 50.

p = ANGLES(1,1:L);
t = ANGLES(2,1:L);
ps = ANGLES(3,1:L);

up = IN(1,1:L);
vp = IN(2,1:L);
wp = IN(3,1:L);

u = up + vp.*sin(p).*tan(t) + wp.*cos(p).*tan(t);
v = 0 + vp.*cos(p) - wp.*sin(p);
w = 0 + vp.*sin(p)./cos(t) + wp.*cos(p)./cos(t);

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 23

OUT = [u;v;w];
end

function [u, alpha, beta] = alignwind(U)
% Function from EDDYCORR toolbox
%
Ub = mean(U(1,:));
Vb = mean(U(2,:));
Wb = mean(U(3,:));
Sb = sqrt(Ub^2+Vb^2);
beta = atan2(Wb,Sb);
alpha = atan2(Vb,Ub);
Ur = U(1,:)*cos(alpha)*cos(beta) + U(2,:)*sin(alpha)*cos(beta) + U(3,:)*sin(beta);
Vr = -U(1,:)*sin(alpha) + U(2,:)*cos(alpha);
Wr = -U(1,:)*cos(alpha)*sin(beta) - U(2,:)*sin(alpha)*sin(beta) + U(3,:)*cos(beta);

% predefine u for coder
nU=length(U);
u=zeros(3,nU);

u(1,:) = Ur;
u(2,:) = Vr;
u(3,:) = Wr;

beta = beta*180/pi;
alpha = alpha*180/pi;
end

function g=grv(lat)
gamma=9.7803267715;
c1=0.0052790414;
c2=0.0000232718;
c3=0.0000001262;
c4=0.0000000007;

phi=lat*pi/180;
x=sin(phi);
g=gamma.*(1+c1*x.^2+c2*x.^4+c3*x.^6+c4*x.^8);
end

function y=medfilt(x,n)
% This version of medfilt can only hand one time series at a time
blksz = [];
DIM = [];

% Check if the input arguments are valid
if isempty(n)
 n = 3;
end

[x, nshifts] = shiftdim(x);

% Verify that the block size is valid.
siz = size(x);
blksz = siz(1); % siz(1) is the number of rows of x (default)

% Initialize y with the correct dimension
y = zeros(siz);

% Call medfilt1D (vector)
for i = 1:prod(siz(2:end)),

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 24

 y(:,i) = medfilt1D(x(:,i),n,blksz);
end

% Convert y to the original shape of x
 y = shiftdim(y, -nshifts);
end

function y = medfilt1D(x,n,blksz)
%MEDFILT1D One dimensional median filter.
%
% Inputs:
% x - vector
% n - order of the filter
% blksz - block size

nx = length(x);
if rem(n,2)~=1 % n even
 m = n/2;
else
 m = (n-1)/2;
end
X = [zeros(m,1); x; zeros(m,1)];
y = zeros(nx,1);

% Work in chunks to save memory
indr = (0:n-1)';
indc = 1:nx;
blksz=1;
for i=1:blksz:nx
 ind = indc(ones(1,n),i:min(i+blksz-1,nx)) + ...
 indr(:,ones(1,min(i+blksz-1,nx)-i+1));
 xx = reshape(X(ind),n,min(i+blksz-1,nx)-i+1);
 y(i:min(i+blksz-1,nx)) = median(xx,1);
end
end

function yout = filtfilter(b,a,xin)
% x must be a collumn vector for this to work
%FILTFILT Zero-phase forward and reverse digital IIR filtering.
% Y = FILTFILT(B, A, X) filters the data in vector X with the filter
% described by vectors A and B to create the filtered data Y. The
% filter is described by the difference equation:
%
% a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
% - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
%
% The length of the input X must be more than three times
% the filter order, defined as max(length(B)-1,length(A)-1).
%
% References:
% [1] Sanjit K. Mitra, Digital Signal Processing, 2nd ed.,
% McGraw-Hill, 2001
% [2] Fredrik Gustafsson, Determining the initial states in forward-
% backward filtering, IEEE Transactions on Signal Processing,
% pp. 988-992, April 1996, Volume 44, Issue 4

% Copyright 1988-2010 The MathWorks, Inc.
% $Revision: 1.7.4.8 $ $Date: 2011/05/13 18:07:25 $

% If input data is a row vector, convert it to a column
isRowVec = size(xin,1)==1;
if isRowVec

Data Product Specification for FDCHP Data Products

Ver 1-00 1341-00280 Page 25

 x = xin(:);
else
 x=xin;
end
[Npts,Nchans] = size(x);

%--
% Parse coefficients vectors and determine initial conditions
% b and a are vectors that define the transfer function of the filter
%--
[L,nfilt] = size(b);
% Check coefficients
b = b(:);
a = a(:);
nfact = 3*(nfilt-1); % length of edge transientsl

% The non-sparse solution to zi may be computed using:
zi=(eye(nfilt-1) - [-a(2:nfilt), [eye(nfilt-2); zeros(1,nfilt-2)]]);
zi=zi \ (b(2:nfilt) - b(1)*a(2:nfilt));

% Filter the data
y = [2*x(1)-x(nfact+1:-1:2); x; 2*x(end)-x(end-1:-1:end-nfact)];

% filter, reverse data, filter again, and reverse data again
y = filter(b,a,y,zi*y(1));
y = y(end:-1:1);
y = filter(b,a,y,zi*y(1));

% retain reversed central section of y
y = y(end-nfact:-1:nfact+1);
if isRowVec

 yout = y.'; % convert back to row if necessary
else
 yout = y;
end
end

Appendix B Output Accuracy

For an accuracy analysis of the flux measurements, see Bigorre, et al. (2013) and F. Bradley and
C. Fairall (2006), section “B3. Estimate of Turbulent Flux Errors”.

Appendix C Sensor Calibration Effects

<N/A>

