

Science User Group for Research (SUGR) Meeting: Advancing Ocean Carbon Science

Introduction

George Voulgaris, Jim Edson & Amber Coogan 2024 Fall AGU Meeting November 8, 2024

Frontier's Paper

Objectives of SUGR Meetings

Exchange of Ideas

SUGR meetings facilitate direct feedback from the community to improve OOI services. This collaborative approach ensures that OOI remains responsive to user needs.

Informal Mentorship

These gatherings foster connections between
senior and Early-Career Scientists (ECS). This
mentorship model promotes knowledge
transfer and career development within the
OOI community.

NSF's Ocean Observatories Initiative

A System of Systems

OCEAN

OBSERVATORIES

WOODS HOLE OCEANOGRAPHIC

INSTITUTION

W

UNIVERSITY of

WASHINGTON

Oregon State University

Global Station Papa and Irminger Arrays

Regional Cabled Array

Coastal Pioneer Arrays at NES

Coastal Endurance Array

Coastal Pioneer Arrays at MAB

Opportunities for Observatory-Based Research

Sustained arrays supporting sophisticated sensors in challenging locations.

From seafloor to lower atmosphere.

Open access to interdisciplinary data.

Answers to data access questions.

Long-term time series data sets and visualization tools.

- Opportunities for shared ship time.
- Feasibility assessment for external PI proposals.
- Assistance with PI-added sensors and platforms.
- Community engagement activities.

Schematic drawing of the OOI Coastal Endurance Array. All platforms include BGC sensors: Inshore Surface Moorings (1, 4): Surface Buoy - Fluorescence/Chlorophyll; Near-surface instrument frame (NSIF) at 7 m - pCO₂, pH, Oxygen, Fluorescence/Chlorophyll, Nitrate; Multi-function node

- (MFN) at the bottom pH, pCO₂, Oxygen. Coastal Surface Moorings (2, 3, 5, 6): Surface Buoy - pCO₃; Near-surface instrument frame (NSIF) at 7 m - pH, Oxygen, Fluorescence/Chlorophyll, Nitrate; Washington Line (5, 6) Multi-function node (MFN) at the bottom or Oregon Line (2, 3) co-located Cabled Benthic Experiment Package - pH,
- pCO₂, Oxygen Coastal Surface-Piercing Profiler Moorings (1, 2, 4, 5): Oxygen, Fluorescence/Chlorophyll, Nitrate
- (surface to bottom)
- RCA Cabled Profiler Moorings (3); Shallow Profiler Winched Pod (5 to 200 m) pCO₂, pH. Oxygen, Nitrate, Fluorescence/Chlorophyll; Fixed Platform at 200 m - pH, pCO₂, Oxygen, Zooplankton; Deep Profiler (125 to 580 m) - Oxygen, Fluorescence/Chlorophyll;
- RCA Seafloor Benthic Experiment Platforms: (2,3) pCO2, pH, Oxygen, Camera, Hydrophone, Zooplankton (2).

Wire-Following Profiler Mooring (6) - Oxygen, Fluorescence/Chlorophyll (15 to 540 m) Mobile Assets: Coastal Gliders (0 - 200 m, 0 - 1000 m or 10 m above bottom) - Oxygen and

Schematic drawing of the OOI Global Irminger Sea Array. Also applicable to the Argentine Basin Array (active 2015-2018) and Southern Ocean Array (active 2015-2020). All platforms include BGC sensors:

- 1. Apex Profiler Mooring: Oxygen and Fluorescence/ Chlorophyll-a on the shallow (≈150-2100m/2600 m at Irminger) and deep (2150-4100m, not at Irminger) ≈ profilers.
- 2. Apex Surface Mooring: pCO₂ and Oxygen at surface, 12, 40, 80, 130 m; pH at 20 & 100 m; Fluorescence/ Chlorophyll and Nitrate at surface & 12 m.
- 3. & 4 Flanking Moorings A & B: Oxygen, Fluorescence/ Chlorophyll, and pH at 30 m.
- 4. Mobile Assets: Oxygen and Fluorescence/Chlorophyll on Open Ocean Gliders (0-1000 m); Oxygen, Fluorescence/ Chlorophyll, and Nitrate on Global Profiling Gliders (0-200 m).

Schematic drawing of the OOI Global Station Papa Array. All platforms include BGC sensors:

- 1. Apex Profiler Mooring: Oxygen and Fluorescence/Chlorophyll-a on shallow (≈150-2100m) and deep (2150-4100m) profilers.
- 2. and 3. Flanking Moorings A & B: Oxygen, Fluorescence/Chlorophyll-a, and pH at 30 m.
- 4. Mobile Assets: Oxygen and Fluorescence/Chlorophyll-a on Open Ocean Gliders (0-1000 m): Oxygen. Fluorescence/Chlorophyll-a, and Nitrate on Global Profiling Gliders (0-200 m).

Biogeochemical Sensor Data from the NSF OOI Arrays

Adapted from Palevsky et al., 2022. OOI Biogeochemical Sensor Data: Best Practices & User Guide http://dx.doi.org/10.25607/OBP-1865

Schematic drawing of the OOI Coastal Pioneer New England Shelf (NES) Array*. All platforms include BGC sensors:

- Inshore (1), Central (2), & Offshore (3) Surface Moorings: Surface buoy pCO2; Near-surface instrument frame (NSIF) at 7 m - pH, Oxygen,
- Fluorescence/Chlorophyll, Nitrate; Multi-function node (MFN) at the bottom pH, pCO₂, Oxygen , Zooplankton.
- Inshore (4), Central Inshore (5), Central Offshore (6), & Offshore (7) Profiler Moorings: Oxygen and Fluorescence/Chlorophyll (25 m depth to 20 m above bottom)
- Mobile Assets: Coastal Gliders (0 200 m, 0 1000 m or 10 m above bottom) -Oxygen and Fluorescence/ Chlorophyll: Coastal Profiling Gliders (0 - 200 m or 10 m above bottom) and AUVs - Oxygen. Fluorescence/Chlorophyll, Nitrate. *NES location, deployed 2016-2022: the Coastal Pioneer Array will move to the Southern MAB with a new array configuration beginning in 2024.

Schematic drawing of the OOI Regional Cabled Axial Seamount Array. Axial Base and Caldera host the following BGC sensors, including: Axial Base Deep Profiler Mooring: Oxygen, Fluorescence/Chlorophyll (125 to 2.465 m)

Axial Base Seafloor: Oxygen

Axial Base Shallow Profiler Mooring: Winched Profiler Pod: pCO₂, pH, Oxygen

- Fluorescence/ Chlorophyll, Nitrate (5 to 200 m); Fixed Platform at 200 m pH. Oxygen, Fluorescence/ Chlorophyll
- Axial Caldera: Live HD Camera (1) (1500 m); Fluid chemistry, microbial DNA (4).

Schematic drawing of the OOI Coastal Pioneer Mid-Atlantic Bight (MAB) Array. All platforms include BGC sensors:

Western (1) and Central (2) Shallow Water Moorings: Profiler - Oxygen and Chlorophyll

fluorescence (3 m depth to 6 m above bottom). Central (2), Northern (3) and Southern (7) Surface Moorings: Surface buoy - pCO2; Near

Surface Instrument frame (NSIF) at 7 m – pH, Oxygen, Chlorophyll fluorescence, Nitrate; Multi-Function Node (MFN) 1 m above seafloor - pH, pCO2, Oxygen, Zooplankton.

Central (2) Surface Mooring: NSIF - Imaging Flow CytoBot.

Northern (3), Northeast (4), Eastern (5), Southeast (6) and Southern (7) Profiler Moorings – Oxygen and Chlorophyll fluorescence (25 m depth to 20 m above bottom)

Coastal Gliders (dashed lines): All gliders – Oxygen and Chlorophyll fluorescence; Offshore Flux line - Nitrate. AUVs (not shown): Oxygen, Chlorophyll

fluorescence and Nitrate

Schematic drawing of the OOI Regional Cabled Continental Margin Arrav

Oregon Slope Base Seafloor: Oxygen Oregon Slope Base Shallow Profiler Mooring: Shallow Profiler Winched

Pod pCO₂, pH, Oxygen, Fluorescence/Chlorophyll, Nitrate (5 to 200 m);

Fixed Platform at 200 m - pH, Oxygen, Fluorescence/Chlorophyll Oregon Slope Base Deep Profiler Mooring: Oxygen, Fluorescence/Chlorophyll (125 to 2,905 m).

ES.0R0 **OCEANOBSERVATORI**

Democratization of Data

The OOI provides research quality data to the user community. These data are **open access** to researchers, educators, and the public in near real-time at: https://oceanobservatories.org/

eismometer Locations	Axial Seamount 300 miles offshore		Cascadia Margin Off Newport Oregon
Axial Base 2600 m water depth		Slope Base 2900 m water depth	
Axial Summit 1500 m water depth		Southern Hydrate Ridge ⁷⁸⁰ m water depth	
		7	

OBSERVATORIES

Geophysical & Environmental Variables

Seafloor

- Seafloor Pressure
- Temperature (0->350°C)
- Bottom Pressure-Tilt
- Seismometers short period & broadband
- Accelerometer
- Hydrophones low frequency and broadband
- Remote Access Fluid Sampler (Major-Gas)
- Temperature Resistivity
- Imagery (Still & HD)
- HPIES
- Osmotic Fluid Samplers
- 3D Thermistor Array
- Fluid Flow Meters
- Horizontal Electrometer Pressure-Inverted Echosounder
- Mammal Vocalization
- Microbial DNA

Democratization of Data

The OOI provides research quality data to the user community. These data are **open access** to researchers, educators, and the public in near real-time at: <u>https://oceanobservatories.org/</u>

Yoder, M. F., Palevsky, H. I., & Fogaren, K. E. (2024). Net community production and inorganic carbon cycling in the central Irminger Sea. J. Geophys. Res., 129, e2024JC021027. https://doi.org/10.1029/2024JC021027

SUGR meeting at the Fall AGU meeting Advancing Ocean Carbon Science Sunday December 8th from 11am to 2pm.

Palevsky, H. and 23 co-authors, (2023). OOI Biogeochemical Sensor Data: Best Practices & User Guide Global Ocean Observing System, 1(1.1), 1–135. https://doi.org/10.25607/OBP-1865.2 **GOOS ENDORSED PRACTICE**

Surface Variables

- Pressure
 - Radiative Fluxes
 - Temperature
 - Humidity
 - Precipitation
 - Moisture/Evaporation
- Vector Wind
- DC Stress & Buoyancy Flux

Oceanographic

- Net Surface Heat Flux
- Temperature Profiles
- Salinity Profiles
- Currents Profiles
- Sea Level
- Sound
- Turbidity

Biogeochemical Sensors (at multiple depths)

- pH
- pCO₂
- Oxygen
- Plankton & zooplankton
- Nitrate
- Chlorophyll-a
- CDOM
- Ship Surveys (DIC, TA)

Opportunities for Observatory-Based Research

WASHINGTON

Agenda

1. Intro

- 2. OOI talk on BGS measurements
- 3. Lightning Talks from students
- 4. A research example using the OOI BGC data on the Irminger Sea
- 5. BGC working group and the BGC manual
- 6. New and updated BGC sensors and platforms
- 7. NOAA contributions
- 8. Discussion

Frontier's Paper **BGC Manual**

 \triangle

Data Explorer Tutorials oceanobservatories.org/tutorials/

▼ COI Tutorials - Ocean Observatories × +					– o ×	
← → C ² , oceanobservatories.org/tutorials/						
OCEAN OBSERVATORIES INITIATIVE				> Subscribe > Acc	ess Data 📏 Help	
The Observatory Science Participate in OOI	Community Engagement	OOI Data Res	ources			
Tutorials	Data Ambassador Program					
ė	Science User Group for Research meetings					
In an attempt to make OOI data more accessible and easy-1	Communities > er of tutorials to			OOI Data Data Access		
help users access and integrate OOI data it into research a	Newsletter					
Working with Data Explor	Events			Data Quality		
	Visual Galleries					
Find and Visualize Time-Series Data	Media		> >	Data Products		
> Compare Time-Series Data	Webinar Archive		>	Community Data Tool	S	
> Find and Visualize Glider Data	Join Us			Jupyter Notebook		
> Find and Visualize Profiler Data				How to Use, Acknowledge, and		
> Using QARTOD Flags for OOI Data		Cite Data				
https://oceanobservatories.org/tutorials/#			~	Data HelpDesk	Manage consent	

 \triangle